Skip to main content

Autonomous Mobile Intelligent Robots on Fuzzy System with Optimal Theories

  • Conference paper
  • 1058 Accesses

Part of the book series: Advances in Soft Computing ((AINSC,volume 54))

Abstract

A dynamical model for autonomous mobile intelligent robots is presented. Based on the local information of the swarm, a fuzzy logical controller (FLC) of the attraction/ repulsion function is built. Combining with the rate consensus algorithm, the swarming of the separation, cohesion and alignment is achieved. Based on the optimal controller theories, a performance target is used to measure the states of the system. By applying the connected network from the individual local perceived information, the aggregation of the multi-agent systems can swarm following a whole consensus in the computer simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 4, 25–34 (1987)

    Article  Google Scholar 

  2. Vicsek, T., Czirok, A., Ben-Jacob, E., et al.: Novel type of phase transition in a system of self-driven particles. Phasical Review Letters 6, 1226–1229 (1995)

    Article  Google Scholar 

  3. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans. on Automatic Control 6, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  4. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. on Automatic Control 2, 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. on Automatic Control 5, 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  6. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. on Automatic Control 9, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  7. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. on Automatic Control 3, 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formation. IEEE Trans. on Automatic Control 9, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  9. Lin, Z., Brouke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 4, 622–629 (2004)

    Article  Google Scholar 

  10. Bauso d., Giarre, L., Pesenti, R.: Nonlinear protocols for optimal distributed consensus in networks of dynamic agents. Systems and Control Letters 11, 918–928 (2006)

    MathSciNet  Google Scholar 

  11. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part i: Fixed topology. In: Proc. IEEE Conf. Decision Control, Maui, Hawaii, pp. 2010–2015 (2003)

    Google Scholar 

  12. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part ii: Dynamic topology. In: Proc. IEEE Conf. Decision Control, Maui, Hawaii, pp. 2016–2021 (2003)

    Google Scholar 

  13. Veerman, J.J.P., Lafferriere, G., Caughman, J.S., Williams, A.: Flocks and formations. J. Stat. Physics 121, 901–936 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Systems and Control Letters 1, 65–78 (2004)

    Article  MathSciNet  Google Scholar 

  15. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: Proc. Int. Conf. Information Processing in Sensor Networks, Los Angeles, CA, April 2005, pp. 63–70 (2005)

    Google Scholar 

  16. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proc. IEEE Conf. Decision Control, European Control Conf., Seville, Spain, December 2005, pp. 6698–6703 (2005)

    Google Scholar 

  17. Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. on Automatic Control 11, 1867–1872 (2005)

    Article  MathSciNet  Google Scholar 

  18. Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of state-dependent graph Laplacian. IEEE Trans. Autom. Control 1, 116–120 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ren, W., Beard, R.W., Atkins, E.M.: Information Consensus in Multivehicle Cooperative Control: Collective Group Behavior through Local Interaction. IEEE Control Systems Magazine 2, 71–82 (2007)

    Article  Google Scholar 

  20. Lawton, J.R., Beard, R.W., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Automat. 6, 933–941 (2003)

    Article  Google Scholar 

  21. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Contr. 1, 121–127 (2005)

    MathSciNet  Google Scholar 

  22. Caughman, J.S., Lafferriere, G., Veerman, J.J.P., et al.: Decentralized control of vehicle formations. Syst. Control Lett. 9, 899–910 (2005)

    MathSciNet  Google Scholar 

  23. Ren, W.: Distributed Attitude Alignment in Spacecraft Formation Flying. International Journal of Adaptive Control and Signal Processing 2(3), 95–113 (2007)

    Article  Google Scholar 

  24. Lawton, J.R., Beard, R.W.: Synchronized multiple spacecraft rotations. Automatica 8, 1359–1364 (2002)

    Article  MathSciNet  Google Scholar 

  25. Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Trans. Autom. Control 3, 387–392 (2005)

    Article  MathSciNet  Google Scholar 

  26. Hristu, D., Morgansen, K.: Limited communication control. Syst. Control Lett. 37, 193–205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., et al.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 2, 229–243 (2006)

    Article  MathSciNet  Google Scholar 

  28. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked Multi-agent systems. Proceedings of the IEEE 1, 215–233 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Hy., Zhang, Fz. (2009). Autonomous Mobile Intelligent Robots on Fuzzy System with Optimal Theories. In: Cao, By., Zhang, Cy., Li, Tf. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88914-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88914-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88913-7

  • Online ISBN: 978-3-540-88914-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics