Skip to main content

Application of Artificial Neural Networks to Classify Water Quality of the Yellow River

  • Conference paper

Part of the book series: Advances in Soft Computing ((AINSC,volume 54))

Abstract

Within the period from 2003 to 2005 (high water, normal water and low water) 63 samples are collected and the measurement of 10 chemical variables of the Yellow River of Gansu period, are carried out. These variables are dissolved oxygen (DO), chemical oxygen demand (COD), non-ion ammonia (NH x ), volatilization Hydroxybenzene (OH), cyanide (CN), As, Hg, Cr6 + , Pb, and Cd. For handling the results of all measurements different chemoinformatics methods are employed: (i) The basic statistical methods that uniform design is employed to determinate the data set according to the water quality standard, (ii) MLP neural network (BP) and Probabilistic neural networks (PNN) are used to classify the water quality of different sampling site and different sampling time. The correlation between the water quality classes and chemical measurements is sought. The model between the water quality classes and chemical measurements is built, and these models could quickly, completely and accurately classify the water quality of the Yellow River.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., de Jong, S., Lewi, P.J., Verbeke, J.S.: Handbook of Chemometrics and Qualimetrics [M], Part A. Elsevier, Amsterdam (1997)

    Google Scholar 

  2. Zhang, P., Dudley, N., Ure, A.M., Littlejohn, D.: Application of principal component analysis to the interpretation of rainwater compositional data. Anal. Chim. Acta 258(1), 1–10 (1992)

    Article  Google Scholar 

  3. Alberto, W.D., Del Pilar, D.M., Valeria, A.M., Fabiana, P.S., Cecilia, H.A., De Los Angeles, B.M.: Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality: a case study. Water Res. 35(2), 2881–2894 (2001)

    Article  Google Scholar 

  4. Lindegren, R., Josefson, M.: Bottom water formation in the Weddell Sea resolved by principal component analysis and target estimation. Chemometr. Intell. Lab. Syst. 44(2), 403–409 (1998)

    Article  Google Scholar 

  5. Kallio, M.P., Mujunen, S.P., Hatzimihalis, G., Koutoufides, P., Minkkinen, P., Wilkie, P.J., Connor, M.A.: Multivariate data analysis of key pollutants in sewage samples: a case study. Anal. Chim. Acta 393(3), 181–191 (1999)

    Article  Google Scholar 

  6. Warwick, R.M.: The level of taxonomic discrimination required to detect pollution detects on marine benthic communities. Mar. Poll. Bull. 19(2), 259–268 (1988)

    Article  Google Scholar 

  7. Ignatiades, L., Karydis, M., Vounatsou, P.: A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. Mar. Pollut. Bull. 24(3), 238–243 (1992)

    Article  Google Scholar 

  8. Karydis, M.: Quantitative assessment of eutrophication: a scoring system for characterising water quality in coastal marine ecosystems. Environ. Monitoring Assessment 41(4), 233–246 (1996)

    Article  Google Scholar 

  9. Walley, W.J., Fontama, V.: Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain. Water Res. 32(4), 613–622 (1998)

    Article  Google Scholar 

  10. Foody, G.M.: Applications of the self-organizing feature map neural network in community data analysis. Ecol. Modeling 120(2-3), 97–107 (1999)

    Article  Google Scholar 

  11. Brosse, S., Guegan, J.F., Tourenq, J.N., Lek, S.: The use of artificial neural networks to assess shabundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Modeling 120(2-3), 299–311 (1999)

    Article  Google Scholar 

  12. Barciela, R.M., Garcia, E., Fernandez, E.: Modeling primary production in a coastal embayment acted by upwelling using dynamic ecosystems models and artificial neural networks. Ecol. Modeling 120(2-3), 199–211 (1999)

    Article  Google Scholar 

  13. Lek, S., Guegan, J.F. (eds.): Artificial Neural Networks: Application to Ecology and Evolution [M]. Springer, Berlin (2000)

    Google Scholar 

  14. McAlernon, P., Slater, J.M., Lan, K.T.: Mapping of chemical functionality using an array of quartz crystal microbalances in conjunction with Kohonen self-organizing maps. Analyst 124(4), 851–857 (1999)

    Article  Google Scholar 

  15. Li, Y., Jiang, J.H., Chen, Z.P., Xu, C.J., Yu, R.Q.: A new method based on counter propagation network algorithm for chemical pattern recognition. Anal. Chim. Acta. 388(3), 161–170 (1999)

    Article  Google Scholar 

  16. Dolmatova, L., Ruckerbush, C., Dupuy, N., Huvenne, J.P., Legrand, P.: Identification of modified starches using infrared spectroscopy and artificial neural network processing. Appl. Spectrosc. 52(4), 329–338 (1998)

    Article  Google Scholar 

  17. Mei-ni, Y., Ding-fang, L.: FANN-based surface water quality evaluation model and its application in the Shaoguan area. Geo-spatial Information Science 10(4), 303–310 (2007)

    Article  Google Scholar 

  18. You-chuan, W., Hong-yu, X., Zheng-bing, W., Xiao-li, S.: Application of artificial neural network and GIS to water quality evaluation. Engineering Journal of Wuhan University 36(3), 7–12 (2003)

    Google Scholar 

  19. Zhong-yang, G., Zhong-yuan, C., Lu-qian, L., Bao-ping, S., Yan, L.: Artificial neural network and its application in Regime Prediction of ground water quality. Journal of East China Normal Science 1, 84–89 (2001)

    Google Scholar 

  20. Shou-yu, C., Ya-wei, L.: Water quality evaluation based on fuzzy artificial neural network. Advances in Water Science 16(1), 88–91 (2005)

    Google Scholar 

  21. Shu, J.: Using Neural Network model to predict water quality. Environmental Science And Management 31(1), 44–46 (2006)

    Google Scholar 

  22. Yi-ming, K., Chenwuing, L., Kaohung, L.: Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Research 36(1), 148–158 (2004)

    Google Scholar 

  23. Maier, H.R., Dandy, G.C.: Neural network models for forecasting univariate time series. Neural Net. World (5), 747–771 (1996)

    Google Scholar 

  24. Maier, H.R., Dandy, G.C.: The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32(4), 1013–1022 (1996)

    Article  Google Scholar 

  25. Maier, H.R.: Use of artificial neural networks for modeling multivariate water quality time series[M]. PhD Thesis. Department of Civil and Environmental Engineering, The University of Adelaide, p. 464 (1995)

    Google Scholar 

  26. Maier, H.R., Dandy, G.C., Burch, M.D.: Use of artificial neural networks for modeling cyanobacteria Anabenaspp in the River Murray. South Australia. Ecol. Model. 105(2), 257–272 (1998)

    Google Scholar 

  27. Li-hua, C., Qin-chun, C., Xing-guo, C.: Application of BP networks to predict water quality of the Yellow River. Journal of Lanzhou University(Natural Science) 39(2), 53–56 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Lh., Zhang, Xy. (2009). Application of Artificial Neural Networks to Classify Water Quality of the Yellow River. In: Cao, By., Zhang, Cy., Li, Tf. (eds) Fuzzy Information and Engineering. Advances in Soft Computing, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88914-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88914-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88913-7

  • Online ISBN: 978-3-540-88914-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics