Skip to main content

Log-gain Principles for Metabolic P Systems

  • Chapter
  • First Online:
Book cover Algorithmic Bioprocesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

Metabolic P systems, shortly MP systems, are a special class of P systems, introduced for expressing biological metabolism. Their dynamics are computed by metabolic algorithms which transform populations of objects according to a mass partition principle, based on suitable generalizations of chemical laws. In this paper, the basic principles of MP systems are formulated for introducing the Log-gain principles, and it is shown how to use them for constructing MP models from experimental data of given metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardini F, Manca V (2003) Dynamical aspects of P systems. Biosystems 70:85–93

    Article  Google Scholar 

  2. von Bertalanffy L (1967) General systems theory: foundations, developments, applications. George Braziller Inc, New York

    Google Scholar 

  3. Besozzi D, Ciobanu G (2005) A P system description of the sodium-potassium pump. In: Mauri G, Păun G, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2004. Lecture notes in computer science, vol 3365. Springer, Berlin, pp 210–223

    Google Scholar 

  4. Bianco L (2007) Membrane models of biological systems. PhD thesis, University of Verona

    Google Scholar 

  5. Bianco L, Fontana F, Franco G, Manca V (2006) P systems for biological dynamics. In: Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) Applications of membrane computing. Springer, Berlin, pp 81–126

    Google Scholar 

  6. Bianco L, Fontana F, Manca V (2005) Reaction-driven membrane systems. In: Wang L, Chen K, Ong Y-S (eds) Advances in natural computation. Lecture notes in computer science, vol 3611. Springer, Berlin, pp 1155–1158

    Google Scholar 

  7. Bianco L, Fontana F, Manca V (2006) P systems with reaction maps. Int J Found Comput Sci 17(1):27–48

    Article  MATH  MathSciNet  Google Scholar 

  8. Bianco L, Manca V, Marchetti L, Petterlini M (2007) Psim: a simulator for biomolecular dynamics based on P systems. In: IEEE congress on evolutionary computation (CEC 2007), pp. 883–887

    Google Scholar 

  9. Bianco L, Pescini D, Siepmann P, Krasnogor N, Romero-Campero FJ, Gheorghe M (2007) Towards a P systems pseudomonas quorum sensing model. In: Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 197–214

    Chapter  Google Scholar 

  10. Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) (2006) Applications of membrane computing. Springer, Berlin

    Google Scholar 

  11. Castellini A, Franco G, Manca V (2007) Toward a representation of hybrid functional Petri nets by MP systems. In: Suzuki, Y., Păun, G., Adamatzky, A., Hagiya, M., Umeo, H. (eds) Natural computing, 2nd international workshop on natural computing, IWNC University of Nagoya, Japan, pp 28–37

    Google Scholar 

  12. Ehrenfeucht A, Rozenberg G (2004) Basic notions of reaction systems. In: Lecture notes in computer science, vol 3340. Springer, Berlin, pp 27–29

    Google Scholar 

  13. Ehrenfeucht A, Rozenberg G (2006) Reaction systems. Fund Inform 76:1–18

    Google Scholar 

  14. Ehrenfeucht A, Rozenberg G (2007) Events and modules in reaction systems. Theor Comput Sci 376:3–16

    Article  MATH  MathSciNet  Google Scholar 

  15. Fontana F, Bianco L, Manca V (2005) P systems and the modeling of biochemical oscillations. In: Freund R, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2005. Lecture notes in computer science, vol 3850. Springer, Berlin, pp 199–208

    Chapter  Google Scholar 

  16. Fontana F, Manca V (2008) Predator-prey dynamics in P systems ruled by metabolic algorithm. Biosystems 91(3):545–557

    Article  Google Scholar 

  17. Fontana F, Manca V (2007) Discrete solutions to differential equations by metabolic P systems. Theor Comput Sci 372:165–182

    Article  MATH  MathSciNet  Google Scholar 

  18. Franco G, Manca V (2004) A membrane system for the leukocyte selective recruitment. In: Alhazov A, Martín-Vide C, Păun G (eds) Membrane computing, WMC 2003. Lecture notes in computer science, vol 2933. Springer, Berlin, pp 180–189

    Google Scholar 

  19. Franco G, Guzzi PH, Mazza T, Manca V (2007) Mitotic oscillators as MP graphs. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 382–394

    Chapter  Google Scholar 

  20. Franco G, Jonoska N, Osborn B, Plaas A (2008) Knee joint injury and repair modeled by membrane systems. Biosystems 91(3):473–488

    Article  Google Scholar 

  21. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  22. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci 88(20):9107–9111

    Article  Google Scholar 

  23. Goldbeter A (2004) Biochemical oscillations and cellular rhythms. Cambridge University Press, New York

    Google Scholar 

  24. Jost J (2005) Dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  25. Kurka P (2003) Topological and symbolic dynamics. Société Mathématique de France, Paris

    MATH  Google Scholar 

  26. Manca V (1998) String rewriting and metabolism: a logical perspective. In: Păun G (ed) Computing with bio-molecules. Springer, Berlin, pp 36–60

    Google Scholar 

  27. Manca V (2006) Topics and problems in metabolic P systems. In: Păun G, Pérez-Jiménez MJ (eds) Membrane computing, BWMC4. Fenix Editora, Sevilla, pp 173–183

    Google Scholar 

  28. Manca V (2006) MP systems approaches to biochemical dynamics: Biological rhythms and oscillations. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 86–99

    Chapter  Google Scholar 

  29. Manca V (2007) Metabolic P systems for biochemical dynamics. Prog Nat Sci 17(4):384–391

    Article  MATH  MathSciNet  Google Scholar 

  30. Manca V (2008) Discrete simulations of biochemical dynamics. In: Garzon MH (ed) DNA 13. Lecture notes in computer science, vol 4848. Springer, Berlin, pp 231–235

    Google Scholar 

  31. Manca V (2008) The metabolic algorithm: principles and applications. Theor Comput Sci 404:142–157

    Article  MATH  MathSciNet  Google Scholar 

  32. Manca V, Bianco L (2008) Biological networks in metabolic P systems. Biosystems 91(3):489–498

    Article  Google Scholar 

  33. Manca V, Bianco L, Fontana F (2005) Evolutions and oscillations of P systems: Applications to biological phenomena. In: Mauri G, Păun G, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2004. Lecture notes in computer science, vol 3365. Springer, Berlin, pp 63–84

    Google Scholar 

  34. Manca V, Franco G, Scollo G (2005) State transition dynamics: basic concepts and molecular computing perspectives. In: Gheorghe M (ed) Molecular computational models: unconventional approachers. Idea Group Inc, UK, Chap. 2, pp 32–55

    Google Scholar 

  35. Manca V, Martino DM (1999) From string rewriting to logical metabolic systems. In: Păun G, Salomaa A (eds) Grammatical models of multi-agent systems. Gordon and Breach, London

    Google Scholar 

  36. Pagliarini R (2007) Esperimenti per la determinazione computazionale dei parametri regolativi nei P sistemi metabolici. Master thesis, University of Verona

    Google Scholar 

  37. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MATH  Google Scholar 

  38. Păun G (2002) Membrane computing. An introduction. Springer, Berlin

    MATH  Google Scholar 

  39. Scollo G, Franco G, Manca V (2006) A relational view of recurrence and attractors in state transition dynamics. In: Schmidt R (ed) Relations and 25 kleene algebra in computer science. Lecture notes in computer science, vol 4136. Springer, Berlin, pp 358–372

    Chapter  Google Scholar 

  40. Scollo G, Franco G, Manca V (2008) Relational state transition dynamics. J Log Algebr Program 76:130–144

    Article  MATH  MathSciNet  Google Scholar 

  41. Pérez–Jiménez MJ, Romero-Campero FJ (2005) A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Mira J, Alvarez JR (eds) Mechanisms, symbols, and models underlying cognition, IWINAC 2005. Lecture notes in computer science, vol 3561. Springer, Berlin, pp 268–278

    Google Scholar 

  42. Pescini D, Besozzi D, Mauri G, Zandron C (2006) Dynamical probabilistic P systems. Int J Found Comput Sci 17(1):183–204

    Article  MATH  MathSciNet  Google Scholar 

  43. Suzuki Y, Fujiwara Y, Tanaka H, Takabayashi J (2001) Artificial life applications of a class of P systems: abstract rewriting systems on multisets. In: Calude CS, Păun G, Rozenberg G, Salomaa A (eds) Multiset processing, mathematical, computer science, and molecular computing points of view. Lecture notes in computer science, vol 2235. Springer, Berlin, pp 299–346

    Google Scholar 

  44. Suzuki Y, Tanaka H (2002) A symbolic chemical system based on an abstract rewriting system and its behavior pattern. J Artif Life Robot 6:129–132

    Article  Google Scholar 

  45. Suzuki Y, Tanaka H (2006) Modelling p53 signaling pathways by using multiset processing. In: Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) Applications of membrane computing. Springer, Berlin, pp 203–214

    Google Scholar 

  46. Voit EO (2000) Computational analysis of biochemical systems. Cambridge University Press, Cambridge

    Google Scholar 

  47. The P systems web page. http://ppage.psystems.eu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Manca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manca, V. (2009). Log-gain Principles for Metabolic P Systems. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics