Advertisement

Artificial Biochemistry

  • Luca CardelliEmail author
Chapter
Part of the Natural Computing Series book series (NCS)

Abstract

We model chemical and biochemical systems as collectives of interacting stochastic automata, with each automaton representing a molecule that undergoes state transitions. In this artificial biochemistry, automata interact by the equivalent of the law of mass action. We investigate several simple but intriguing automata collectives by stochastic simulation and by ODE analysis.

Keywords

Stochastic Simulation Process Algebra Continuous Time Markov Chain Erlang Distribution Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auxiliary materials for this article. http://lucacardelli.name
  2. 2.
    Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3):190–215. http://dx.doi.org/10.1016/j.tcs.2007.11.012 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cardelli L, Zavattaro G (2008) On the computational power of biochemistry. In: Third international conference on algebraic biology, AB 2008, July 2008, Linz Google Scholar
  4. 4.
    Fontana W, Buss LW (1996) The barrier of objects, from dynamical systems to bounded organization. In: Casti J, Karlqvist A (eds) Boundaries and barriers. Addison–Wesley, Reading, pp 56–116 Google Scholar
  5. 5.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361 CrossRefGoogle Scholar
  6. 6.
    Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems analytically. Math Biol 54(1):1–26 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8:231–274 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Harel D, Efroni S, Cohen IR (2003) Reactive animation. In: Proceedings of FMCO 2002. LNCS, vol 2852. Springer, Berlin, pp 136–153 Google Scholar
  9. 9.
    Hillston J (1996) A compositional approach to performance modelling. Cambridge University Press, Cambridge Google Scholar
  10. 10.
    House JE (2007) Principles of chemical kinetics. Academic Press, New York Google Scholar
  11. 11.
    Huang C-YF, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein cascade. Proc Natl Acad Sci USA 93:10078–10083 CrossRefGoogle Scholar
  12. 12.
    Kitano H (2003) A graphical notation for biochemical networks. BioSilico 1(5):169–176 CrossRefGoogle Scholar
  13. 13.
    Lerman K, Galstyan A (2004) Automatically modeling group behavior of simple agents. In: Agent modeling workshop, AAMAS-04, New York Google Scholar
  14. 14.
    Meinke MH, Bishops JS, Edstrom RD (1986) Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. Proc Natl Acad Sci USA 83:2865–2868 CrossRefGoogle Scholar
  15. 15.
    Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge Google Scholar
  16. 16.
    Phillips A, Cardelli L (2004) A correct abstract machine for the stochastic pi-calculus. In: Proceedings of BioConcur’04 Google Scholar
  17. 17.
    Phillips A, Cardelli L, Castagna G (2006) A graphical representation for biological processes in the stochastic pi-calculus. Trans Comput Syst Biol VII:123–152 MathSciNetGoogle Scholar
  18. 18.
    Priami C (1995) Stochastic π-calculus. Comput J 38:578–589 CrossRefGoogle Scholar
  19. 19.
    Priami C, Regev A, Shapiro E, Silverman W (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf Process Lett 80:25–31 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Regev A, Shapiro E (2004) The π-calculus as an abstraction for biomolecular systems. In: Ciobanu G, Rozenberg G (eds) Modelling in molecular biology. Springer, Berlin, pp 219–266 Google Scholar
  21. 21.
    Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343 CrossRefGoogle Scholar
  22. 22.
    Sauroa HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86:5–43 CrossRefGoogle Scholar
  23. 23.
    Soloveichik D, Cook M, Winfree E, Bruck J (2007) Computation with finite stochastic chemical reaction networks. http://www.dna.caltech.edu/DNAresearch_publications.html
  24. 24.
    Tumer K, Wolpert D (2004) A survey of collectives. In: Collectives and the design of complex systems. Springer, Berlin, pp 1–42 Google Scholar
  25. 25.
    Wolkenhauer O, Ullah M, Kolch W, Cho K (2004) Modelling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans Nanobiosci 3:200–207 CrossRefGoogle Scholar
  26. 26.
    Vilar JMG, Kueh HY, Barkai N, Leibler S (2002) Mechanisms of noise-resistance in genetic oscillators. Proc Natl Acad Sci 99(9):5988–5992 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Microsoft ResearchCambridgeUK

Personalised recommendations