Advertisement

A New Mathematical Model for the Heat Shock Response

  • Ion PetreEmail author
  • Andrzej Mizera
  • Claire L. Hyder
  • Andrey Mikhailov
  • John E. Eriksson
  • Lea Sistonen
  • Ralph-Johan Back
Chapter
Part of the Natural Computing Series book series (NCS)

Abstract

We present in this paper a novel molecular model for the gene regulatory network responsible for the eukaryotic heat shock response. Our model includes the temperature-induced protein misfolding, the chaperone activity of the heat shock proteins, and the backregulation of their gene transcription. We then build a mathematical model for it, based on ordinary differential equations. Finally, we discuss the parameter fit and the implications of the sensitivity analysis for our model.

Keywords

Heat Shock Heat Shock Protein Gene Regulatory Network Heat Shock Response Heat Shock Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Essential cell biology, 2nd edn. Garland Science, London Google Scholar
  2. 2.
    Burden RL, Douglas Faires J (1996) Numerical analysis. Thomson Brooks/Cole, Pacific Grove Google Scholar
  3. 3.
    Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103 CrossRefGoogle Scholar
  4. 4.
    El-Samad H, Kurata H, Doyle J, Gross CA, Khamash M (2005) Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci 102(8):2736–2741 CrossRefGoogle Scholar
  5. 5.
    El-Samad H, Prajna S, Papachristodoulu A, Khamash M, Doyle J (2003) Model validation and robust stability analysis of the bacterial heat shock response using sostools. In: Proceedings of the 42nd IEEE conference on decision and control, pp 3766–3741 Google Scholar
  6. 6.
    Guldberg CM, Waage P (1864) Studies concerning affinity. In: Forhandlinger CM (ed) Videnskabs-Selskabet i Christiana, p. 35 Google Scholar
  7. 7.
    Guldberg CM, Waage P (1879) Concerning chemical affinity. Erdmann’s J Pract Chem 127:69–114 CrossRefGoogle Scholar
  8. 8.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) Copasi—a complex pathway simulator. Bioinformatics 22(24):3067–3074 CrossRefGoogle Scholar
  9. 9.
    Kampinga HK (1993) Thermotolerance in mammalian cells: protein denaturation and aggregation, and stress proteins. J Cell Sci 104:11–17 Google Scholar
  10. 10.
    Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115 Google Scholar
  11. 11.
    Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2006) Systems biology in practice. Wiley–VCH, New York Google Scholar
  12. 12.
    Kurata H, El-Samad H, Yi TM, Khamash M, Doyle J (2001) Feedback regulation of the heat shock response in e.coli. In: Proceedings of the 40th IEEE conference on decision and control, pp 837–842 Google Scholar
  13. 13.
    Lepock JR, Frey HE, Ritchie KP (1993) Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol 122(6):1267–1276 CrossRefGoogle Scholar
  14. 14.
    Lepock JR, Frey HE, Rodahl AM, Kruuv J (1988) Thermal analysis of chl v79 cells using differential scanning calorimetry: Implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 137(1):14–24 CrossRefGoogle Scholar
  15. 15.
    Liu B, DeFilippo AM, Li Z (2002) Overcomming immune tolerance to cancer by heat shock protein vaccines. Mol Cancer Ther 1:1147–1151 Google Scholar
  16. 16.
    Lukacs KV, Pardo OE, Colston MJ, Geddes DM, Alton EWFW (2000) Heat shock proteins in cancer therapy. In: Habib (ed) Cancer gene therapy: past achievements and future challenges. Kluwer, Dordrecht, pp 363–368 Google Scholar
  17. 17.
    Nelson DL, Cox MM (2000) Principles of biochemistry, 3rd edn. Worth Publishers, New York Google Scholar
  18. 18.
    Peper A, Grimbergent CA, Spaan JAE, Souren JEM, van Wijk R (1997) A mathematical model of the hsp70 regulation in the cell. Int J Hyperthermia 14:97–124 CrossRefGoogle Scholar
  19. 19.
    Petre I, Hyder CL, Mizera A, Mikhailov A, Eriksson JE, Sistonen L, Back R-J (2008) Two metabolites are enough to drive the eukaryotic heat shock response. Manuscript Google Scholar
  20. 20.
    Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362(9382):469–476 CrossRefGoogle Scholar
  21. 21.
    Press WH, Teukolsky SA, Vetterling WT, Flammery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  22. 22.
    Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat shock response: dynamics of the hsp70 promoter. Biophys J 88(3):1646–1658 CrossRefGoogle Scholar
  23. 23.
    Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the escherichia coli stres circuit using σ 32-targeted antisense. Biotechnol Bioeng 75(1):120–129 CrossRefGoogle Scholar
  24. 24.
    Taubes CH (2001) Modeling differential equations in biology. Cambridge University Press, Cambridge Google Scholar
  25. 25.
    Tomlin CJ, Axelrod JD (2005) Understanding biology by reverse engineering the control. Proc Natl Acad Sci 102(12):4219–4220 CrossRefGoogle Scholar
  26. 26.
    Turányi T (1990) Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 5:203–248 CrossRefMathSciNetGoogle Scholar
  27. 27.
    Workman P, de Billy E (2007) Putting the heat on cancer. Nat Med 13(12):1415–1417 CrossRefGoogle Scholar
  28. 28.
    Zill DG (2001) A first course in differential equations. Thomson, Tompa Google Scholar
  29. 29.
    Zill DG (2005) A first course in differential equations with modeling applications. Thomson, Tompa Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ion Petre
    • 1
    Email author
  • Andrzej Mizera
    • 1
  • Claire L. Hyder
    • 2
    • 3
  • Andrey Mikhailov
    • 2
    • 3
  • John E. Eriksson
    • 2
    • 3
  • Lea Sistonen
    • 2
    • 3
  • Ralph-Johan Back
    • 1
  1. 1.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland
  2. 2.Turku Centre for BiotechnologyTurkuFinland
  3. 3.Department of BiochemistryÅbo Akademi UniversityTurkuFinland

Personalised recommendations