Formal Models of the Calyx of Held

  • Andrea BraccialiEmail author
  • Marcello Brunelli
  • Enrico Cataldo
  • Pierpaolo Degano
Part of the Natural Computing Series book series (NCS)


We survey some recent work on the behavior of the calyx of Held synapse. The analysis considered are based on formal and quantitative models aimed at capturing emerging properties about signal transmission and plasticity phenomena. While surveying work about a specific and real-scale biological system, we distinguish between deterministic and stochastic approaches. We elaborate on the fact that in some cases, as in the calyx, the latter ones seem to be more adequate. The stochastic models, which we have developed, are based on a computational interpretation of biological systems. We illustrate the advantages of this approach in terms of expressiveness.


Label Transition System Calcium Wave Synaptic Depression Stochastic Simulation Algorithm Vesicle Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib MA (ed) (1995) The handbook of brain theory and neural networks. MIT Press, Cambridge Google Scholar
  2. 2.
    Ascoli GA (ed) (2002) Computational neuroanatomy. Humana, Totowa Google Scholar
  3. 3.
    Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev 3:497–516 Google Scholar
  4. 4.
    Bollmann JH, Sakmann B (2005) Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 8:426–434 Google Scholar
  5. 5.
    Bracciali A, Brunelli M, Cataldo E, Degano P (2007) Expressive models for synaptic plasticity. In: Calder M, Gilmore P (eds) Computational methods in system biology (CMSB’07). LNBI, Springer, Edinburgh, pp 152–167 CrossRefGoogle Scholar
  6. 6.
    Bracciali A, Brunelli M, Cataldo E, Degano P (2008) Stochastic models for the in silico simulation of synaptic processes. BMC Bioinform 9(4):S7 CrossRefGoogle Scholar
  7. 7.
    Bracciali A, Brunelli M, Cataldo E, Degano P (2008) Synapses as stochastic concurrent systems. Theor Comput Sci 408(1):66–82 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calder M, Gilmore S, Hillston J (2006) Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra pepa. Trans Comput Syst Biol VII 4230:1–23 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cardelli L (2004) Brane calculi-interactions of biological membranes. In: Vincent V, Schachter V (eds) Proceedings of computational methods in systems biology. LNCS, vol 3082. Springer, Paris, pp 257–280 Google Scholar
  10. 10.
    Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3):190–215 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cassman M, Arkin A, Doyle F, Katagiri F, Lauffenburger D, Stokes C (2007) System biology—international research and development. Springer, The Netherlands Google Scholar
  12. 12.
    Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171 CrossRefGoogle Scholar
  13. 13.
    Cooper LN, Intrator N, Blais BS, Shouval HZ (2004) Theory of cortical platicity. World Scientific, New Jersey Google Scholar
  14. 14.
    Dayan P, Abbot LF (2001) Theoretical neuroscience—computational and mathematical modeling of neural systems. MIT Press, Cambridge Google Scholar
  15. 15.
    De Schutter E (2000) Computational neuroscience: more math is needed to understand the human brain. In: Engquist B, Schmid W (eds) Mathematics unlimited—2001 and beyond, 1st edn. Springer, Berlin, pp 381–391 Google Scholar
  16. 16.
    Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, pp 1–25 Google Scholar
  17. 17.
    Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membrane, synaptic transmission and neuromodulation using a common kinetic formulation. J Comput Neurosci 1:195–231 CrossRefGoogle Scholar
  18. 18.
    Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM, Philadelphia zbMATHGoogle Scholar
  19. 19.
    Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) (2005) Computational cell biology. Springer, New York Google Scholar
  20. 20.
    Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811 CrossRefGoogle Scholar
  21. 21.
    Gardiner CW (2001) Handbook of stochastic methods—for physics, chemistry and the natural science. Springer, Berlin Google Scholar
  22. 22.
    Ghijsen WEJM, Leenders AGM (2005) Differential signaling in presynaptic neurotransmitter release. Cell Mol Life Sci 62:937–954 CrossRefGoogle Scholar
  23. 23.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361 CrossRefGoogle Scholar
  24. 24.
    Gillespie DT, Petzold LR (2006) Numerical simulation for biochemical kinetics. In: Szallasi Z, Stelling J, Perival V (eds) System modeling in cellular biology, 1st edn. MIT Press, Cambridge, pp 331–354 Google Scholar
  25. 25.
    Graham BP, Wong AYC, Forsythe ID (2001) A computational model of synaptic transmission at the calyx of Held. Neurocomputing 38(40):37–42 CrossRefGoogle Scholar
  26. 26.
    Graham BP, Wong AYC, Forsythe ID (2004) A multi-component model of depression at the calyx of Held. Neurocomputing 58(60):449–554 CrossRefGoogle Scholar
  27. 27.
    Hennig MH, Postlethwaite M, Forsythe ID, Graham BP (2007) A biophysical model of short-term plasticity at the calyx of Held. Neurocomputing 70:1626–1629 CrossRefGoogle Scholar
  28. 28.
    Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Westview, Santa Fe Google Scholar
  29. 29.
    Hillston J (1996) A compositional approach to performance modeling. Cambridge University Press, Cambridge Google Scholar
  30. 30.
    Holmes WR (2005) Calcium signaling in dendritic spines. In: Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O (eds) Modeling in the neuroscience—from biological systems to neuromimetic robotics, 2nd edn. CRC Press, New York, pp 25–60 Google Scholar
  31. 31.
    Hosoi N, Sakaba T, Neher E (2007) Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse. J Neurosci 27:14286–14298 CrossRefGoogle Scholar
  32. 32.
    Izhikevich EM (2006) Dynamical system in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge Google Scholar
  33. 33.
    Van Kampen NG (1992) Stochastic processes in physics and in chemistry. Elsevier, Amsterdam Google Scholar
  34. 34.
    Kierzek AM (2002) Stocks: stochastic kinetic simulations of biochemical system with gillespie algorithm. Bioinformatics 18:470–481 CrossRefGoogle Scholar
  35. 35.
    Kitano H (2002) Systems biology: a brief overview. Theor Comput Sci 295(5560):1662–1664 Google Scholar
  36. 36.
    Koch C (1999) Biophysics of computation—information processing in single neuron. Oxford University Press, New York Google Scholar
  37. 37.
    Koch C, Segev I (eds) (1998) Methods in neuronal modeling. MIT Press, Cambridge Google Scholar
  38. 38.
    Lecca P, Priami C, Quaglia P, Rossi B, Laudanna C, Costantin G (2004) A stochastic process algebra approach to simulation of autoreactive lymphocyte recruitment. SIMULATION: Trans Soc Model Simul Int 80(4):273–288 CrossRefGoogle Scholar
  39. 39.
    Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435:497–501 CrossRefGoogle Scholar
  40. 40.
    Lytton WW (2002) From computer to brain—foundations of computational neuroscience. Springer, New York Google Scholar
  41. 41.
    Mathias J, Ewald R, Uhrmacher AM (2008) A spatial extension to the π calculus. Electron Notes Theor Comput Sci 194(3):133–148 CrossRefGoogle Scholar
  42. 42.
    Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge Google Scholar
  43. 43.
    Mitra PP, Bokil H (2008) Observed brain dynamics. Oxford University Press, Oxford Google Scholar
  44. 44.
    Nagasaki M, Onami S, Miyano S, Kitano H (1999) Bio-calculus: its concept and molecular interaction. Genome Inform 10:133–143 Google Scholar
  45. 45.
    Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Eur J Physiol 453:261–268 CrossRefGoogle Scholar
  46. 46.
    Neher E (2007) Short-term plasticity turns plastic. Focus on synaptic transmission at the calyx of Held under in vivo-like activity levels. J Neurophysiol 98:577–578 CrossRefGoogle Scholar
  47. 47.
    Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From neuron to brain. Sinauer Associates, Sunderland Google Scholar
  48. 48.
    Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder M, Gilmore S (eds) Proceedings of computational methods in systems biology. LNCS, vol 4695. Springer, Edinburgh, pp 184–199 CrossRefGoogle Scholar
  49. 49.
    Priami C (1995) Stochastic π-calculus. Comput J 36(6):578–589 CrossRefGoogle Scholar
  50. 50.
    Priami C, Regev A, Shapiro E, Silvermann W (2004) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Theor Comput Sci 325(1):141–167 CrossRefGoogle Scholar
  51. 51.
    Regev A, Panina E, Silverman W, Cardelli L, Shapiro E (2004) Bioambients: an abstraction for biological compartements. Theor Comput Sci 325(1):141–167 zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343 CrossRefGoogle Scholar
  53. 53.
    Rieke F, Warland D, von Steveninck RR, Bialek W (1997) Spikes—exploring the neural codes. MIT Press, Cambridge Google Scholar
  54. 54.
    Sakaba T, Stein A, Jahn R, Neher E (2005) Distinct kinetic changes in neurotransmitter release after snare protein cleavage. Science 309:491–494 CrossRefGoogle Scholar
  55. 55.
    Savtchenko LP, Rusakov DA (2007) The optimal height of the synaptic cleft. Proc Natl Acad Sci 104:1823–1828 CrossRefGoogle Scholar
  56. 56.
    Schneggenburger R, Forsythe ID (2006) The calxy of Held. Cell Tissue Res 326:311–337 CrossRefGoogle Scholar
  57. 57.
    Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 46:889–893 CrossRefGoogle Scholar
  58. 58.
    Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274 CrossRefGoogle Scholar
  59. 59.
    Schneggenburger R, Sakaba T, Neher E (2002) Vescicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212 CrossRefGoogle Scholar
  60. 60.
    De Schutter E (ed) (2001) Computational neuroscience—realistic modeling for experimentalist. CRC Press, Boca Raton Google Scholar
  61. 61.
    Segel LA (1987) Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  62. 62.
    Smith GD (2005) Modeling the stochastic gating of ion channels. In: Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) Computational cell biology, 2nd edn. Springer, New York, pp 285–319 Google Scholar
  63. 63.
    Smolen PD, Baxter DA, Byrne JH (2004) Mathematical modeling and analysis of intracellular signaling pathways. In: Byrne JH, Roberts JL (eds) From molecules to networks—an introduction to cellular and molecular neuroscience. Elsevier/Academic Press, Amsterdam, pp 391–429 Google Scholar
  64. 64.
    Sorensen JB (2004) Formation, stabilization and fusion of the readily releasable pool of secretory vescicles. Eur J Neurosci 448:347–362 Google Scholar
  65. 65.
    Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547 CrossRefGoogle Scholar
  66. 66.
    Ullah M, Wolkenhauer O (2007) Family tree of Markov models in Systems Biology. IET Syst Biol 1:247–254 CrossRefGoogle Scholar
  67. 67.
    Voit EO (2000) Computational analysis of biochemical systems—a practical guide for biochemists and molecular biologists. Cambridge University Press, Cambridge Google Scholar
  68. 68.
    Weis S, Schneggenburger R, Neher E (1999) Properties of a model of Ca2+-dependent vesicle pool dynamics and short term synaptic depression. Biophys J 77:2418–2429 CrossRefGoogle Scholar
  69. 69.
    Wilkinson DJ (2006) Stochastic modeling for System Biology. Chapman and Hall/CRC Press, London Google Scholar
  70. 70.
    Wolfel M, Lou X, Schneggenburger R (2007) A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large cns synapse. J Neurosci 27:3198–3210 CrossRefGoogle Scholar
  71. 71.
    Wolkenhauer O (2009) System Biology—dynamic pathway modeling (to appear) Google Scholar
  72. 72.
    Wolkenhauer O, Ullah M, Kolch W, Cho K-H (2004) Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans Nanobiosci 3:200–207 CrossRefGoogle Scholar
  73. 73.
    Wong AYC, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potentials trains. J Neurosci 23:4868–4877 Google Scholar
  74. 74.
    Xu-Friedman MA, Regehr WG (2004) Structural contribution to short-term synaptic plasticity. Physiol Rev 84:69–85 CrossRefGoogle Scholar
  75. 75.
    Zucker RS, Kullmann DM, Schwartz TL (2004) Release of neurotransmitters. In: Byrne JH, Roberts JL (eds) From molecules to networks—an introduction to cellular and molecular neuroscience. Elsevier/Academic Press, San Diego, pp 197–244 Google Scholar
  76. 76.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrea Bracciali
    • 1
    Email author
  • Marcello Brunelli
    • 2
  • Enrico Cataldo
    • 2
  • Pierpaolo Degano
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Dipartimento di BiologiaUniversità di PisaPisaItaly

Personalised recommendations