Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 66))

Modelling of flow processes in the subsurface is important for many applications. In fact, subsurface flow phenomena cover some of the most important technological challenges of our time. To illustrate, we quote the UN's Human Development Report 2006:

“There is a growing recognition that the world faces a water crisis that, left unchecked, will derail the progress towards the Millennium Development Goals and hold back human development. Some 1.4 billion people live in river basins in which water use exceeds recharge rates. The symptoms of overuse are disturbingly clear: rivers are drying up, groundwater tables are falling and water-based ecosystems are being rapidly degraded. Put bluntly, the world is running down one of its most precious natural resources and running up an unsustainable ecological debt that will be inherited by future generations.”

The road toward sustainable use and management of the earth's groundwater reserves necessarily involves modelling of groundwater hydrological systems. In particular, modelling is used to acquire general knowledge of groundwater basins, quantify limits of sustainable use, and to monitor transport of pollutants in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Aarnes. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul., 2(3):421–439, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numerics of flow in porous media using Matlab. In G. Hasle, K.-A. Lie, and E. Quak, editors, Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, pages 265–306. Springer Verlag, 2007.

    Google Scholar 

  3. J. E. Aarnes, V. Kippe, K.-A. Lie, and A. Rustad. Modelling of multiscale structures in flow simulations for petroleum reservoirs. In G. Hasle, K.-A. Lie, and E. Quak, editors, Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, pages 307–360. Springer Verlag, 2007.

    Google Scholar 

  4. J. E. Aarnes, S. Krogstad, and K.-A. Lie. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul., 5(2):337–363, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. E. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale mixed/mimetic methods on corner-point grids. MComput. Geosci, 12(3):297–315, 2008.

    Article  MathSciNet  Google Scholar 

  6. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comp., 19(5):1700–1716, 1998.

    Article  MATH  Google Scholar 

  7. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM J. Sci. Comp., 19(5):1717–1736, 1998.

    Article  MATH  Google Scholar 

  8. T. Arbogast. Numerical subgrid upscaling of two-phase flow in porous media. In Z. Chen, R. E. Ewing, and Z.-C. Shi, editors, Numerical Treatment of Multiphase Flows in Porous Media (Beijing, 1999), Lecture Notes in Phys., pages 35–49. Springer-Verlag, Berlin, 2000.

    Chapter  Google Scholar 

  9. T. Arbogast. Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal., 42(2):576–598, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Aziz and A. Settari. Petroleum reservoir simulation. Elsevier, London and New York, 1979.

    Google Scholar 

  11. I. Babuška, G. Caloz, and E. Osborn. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31:945–981, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Babuška and E. Osborn. Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal., 20:510–536, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. W. Barker and S. Thibeau. A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Eng., 12:138–143, 1997.

    Google Scholar 

  14. S. H. Begg, R. R. Carter, and P. Dranfield. Assigning effective values to simulator grid-block parameters for heterogeneous reservoirs. SPE Reservoir Eng., pages 455–463, 1989.

    Google Scholar 

  15. A. Benesoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. Elsevier Science Publishers, Amsterdam, 1978.

    Google Scholar 

  16. D. Braess. Finite elements: Theory fast solvers and applications in solid mechanics. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  17. S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Springer—Verlag, New York, 1994.

    MATH  Google Scholar 

  18. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Computational Mathematics. Springer—Verlag, New York, 1991.

    MATH  Google Scholar 

  19. F. Brezzi, K. Lipnikov, M. Shashkov, and V. Simoncini. A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg., 196(37–40):3682–3692, 2007.

    Article  MathSciNet  Google Scholar 

  20. F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonial and polyhedral meshes. Math. Models Methods Appl. Sci., 15:1533–1553, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Chavent and J. Jaffre. Mathematical models and finite elements for reservoir simulation. North Holland, 1982.

    Google Scholar 

  22. Z. Chen and T. Y. Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 72:541–576, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  23. Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in porous media. Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

    MATH  Google Scholar 

  24. M. A. Christie. Upscaling for reservoir simulation. J. Pet. Tech., 48:1004–1010, 1996.

    Google Scholar 

  25. M. A. Christie and M. J. Blunt. Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reserv. Eval. Eng, 4(4):308–317, 2001. url: http://www. spe.org/csp.

    Google Scholar 

  26. L. P. Dake. Fundamentals of reservoir engineering. Elsevier, Amsterdam, 1978.

    Book  Google Scholar 

  27. A. H. Demond and P. V. Roberts. An examination of relative permeability relations for two-phase flow in porous media. Water Res. Bull., 23:617–628, 1987.

    Google Scholar 

  28. L. J. Durlofsky. Numerical calculations of equivalent gridblock permeability tensors for heterogeneous porous media. Water Resour. Res., 27(5):699–708, 1991.

    Article  MathSciNet  Google Scholar 

  29. Y. Efendiev, V. Ginting, T. Hou, and R. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1):155–174, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. E. Ewing. The mathematics of reservoir simulation. SIAM, 1983.

    Google Scholar 

  31. L. Holden and B. Nielsen. Global upscaling of permeability in heterogeneous reservoirs; the output least squares (ols) method. Transp. Porous Media, 40(2):115–143, 2000.

    Article  MathSciNet  Google Scholar 

  32. U. Hornung. Homogenization and porous media. Springer Verlag, New York, 1997.

    MATH  Google Scholar 

  33. T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134:169–189, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Jenny, S. H. Lee, and H. A. Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys., 187:47–67, 2003.

    Article  MATH  Google Scholar 

  35. P. Jenny, S. H. Lee, and H. A. Tchelepi. Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul., 3(1):50–64, 2004/05.

    Article  MathSciNet  Google Scholar 

  36. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of differential operators and integral functionals. Springer—Verlag, New York, 1994.

    Google Scholar 

  37. A. G. Journel, C. V. Deutsch, and A. J. Desbarats. Power averaging for block effective permeability. In SPE California Regional Meeting, Oakland, California, 2–4 April 1986. SPE 15128.

    Google Scholar 

  38. M. J. King, D. G. MacDonald, S. P. Todd, and H. Leung. Application of novel upscaling approaches to the Magnus and Andrew reservoirs. In SPE European Petroleum Conference, The Hague, Netherlands, 20–22 October 1998. SPE 50463.

    Google Scholar 

  39. V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci, 12(3):377–398, 2008.

    Article  MathSciNet  Google Scholar 

  40. V. Kippe, H. Hægland, and K.-A. Lie. A method to improve the mass-balance in streamline methods. In SPE Reservoir Simulation Symposium, Houston, Texas U.S.A., February 26–28 2007. SPE 106250.

    Google Scholar 

  41. L. Lake. Enhanced oil recovery. Prentice Hall, Inglewood Cliffs, NJ, 1989.

    Google Scholar 

  42. B. B. Maini and T. Okazawa. Effects of temperature on heavy oil-water relative permeability. J. Can. Petr. Tech, 26:33–41, 1987.

    Google Scholar 

  43. D. W. Peaceman. Fundamentals of numerical reservoir simulation. Elsevier, Amsterdam, 1977.

    Book  Google Scholar 

  44. P. A. Raviart and J. M. Thomas. A mixed finite element method for second order elliptic equations. In I. Galligani and E. Magenes, editors, Mathematical Aspects of Finite Element Methods, pages 292–315. Springer—Verlag, Berlin — Heidelberg — New York, 1977.

    Chapter  Google Scholar 

  45. P. Renard and G. de Marsily. Calculating equivalent permeability. Adv. Water Resour., 20:253–278, 1997.

    Article  Google Scholar 

  46. D. P. Schrag. Preparing to capture carbon. Science, 315:812–p813, 2007.

    Article  Google Scholar 

  47. K. Stüben. Multigrid, chapter Algebraic Multigrid (AMG): An Introduction with Applications. Academic Press, 2000.

    Google Scholar 

  48. X.-H. Wen and J. J. Gómez-Hernández. Upscaling hydraulic conductivities in heterogeneous media: An overview. J. Hydrol., 183:ix–xxxii, 1996.

    Article  Google Scholar 

  49. O. Wiener. Abhandlungen der Matematisch. PhD thesis, Physischen Klasse der Königlichen Sächsischen Gesellscaft der Wissenschaften, 1912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aarnes, J.E., Lie, K., Kippe, V., Krogstad, S. (2009). Multiscale Methods for Subsurface Flow. In: Engquist, B., Lötstedt, P., Runborg, O. (eds) Multiscale Modeling and Simulation in Science. Lecture Notes in Computational Science and Engineering, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88857-4_1

Download citation

Publish with us

Policies and ethics