Skip to main content

Dynamical Architecture of the Mammalian Olfactory System

  • Chapter
  • 1235 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5286))

Abstract

The mammalian olfactory system shows many types of sensory and perceptual processing accompanied by oscillations at the level of the local field potential, and much is already known about the cellular and synaptic origins of these markers of coherent population activity. Complex, but chemotopic input patterns describe the qualitative similarity of odors, but animals can discriminate even very similar odorants. Coherent population activity signified by oscillations may assist the animals in discrimination of closely related odors. Manipulations to olfactory bulb centrifugal input and GABAergic circuitry can alter the degree of gamma (40-100 Hz) oscillatory coupling within the olfactory bulb, affecting animals’ ability to discriminate highly overlapping odors. The demands of an odor discrimination can also enhance gamma oscillations, but this may depend on the cognitive demands of the task, with some tasks spreading the processing over many brain regions, accompanied by beta (15-30 Hz) instead of gamma oscillations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, N.M., Spors, H., Carleton, A., Margrie, T.W., Kuner, T., Schaefer, A.T.: Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004)

    Google Scholar 

  2. Adrian, E.D.: The electrical activity of the mammalian olfactory bulb. Electroencephalography and Clinical Neurophysiology 2, 377–388 (1950)

    Article  Google Scholar 

  3. Adrian, E.D.: Olfactory reactions in the brain of the hedgehog. Journal of Physiology 100, 459–473 (1942)

    Article  Google Scholar 

  4. Araneda, R.C., Kini, A.D., Firestein, S.: The molecular receptive range of an odorant receptor. Nature Neuroscience 3, 1248–1255 (2000)

    Article  Google Scholar 

  5. Aroniadou-Anderjaska, V., Ennis, M., Shipley, M.T.: Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents. Journal of Neurophysiology 81, 15–28 (1999)

    Google Scholar 

  6. Bernasconi, C., Konig, P.: On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biological Cybernetics 81, 199–210 (1999)

    Article  MATH  Google Scholar 

  7. Beshel, J., Kopell, N., Kay, L.M.: Olfactory bulb gamma oscillations are enhanced with task demands. Journal of Neuroscience 27, 8358–8365 (2007)

    Article  Google Scholar 

  8. Bhalla, U.S., Bower, J.M.: Multiday recordings from olfactory bulb neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. Journal of Computational Neuroscience 4, 221–256 (1997)

    Article  MATH  Google Scholar 

  9. Biella, G., De Curtis, M.: Olfactory inputs activate the medial entorhinal cortex via the hippocampus. Journal of Neurophysiology 83, 1924–1931 (2000)

    Google Scholar 

  10. Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., Buzsaki, G.: Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience 15, 47–60 (1995)

    Google Scholar 

  11. Braver, T.S., Barch, D.M., Gray, J.R., Molfese, D.L., Snyder, A.: Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex 11, 825–836 (2001)

    Article  Google Scholar 

  12. Brovelli, A., Ding, M.Z., Ledberg, A., Chen, Y.H., Nakamura, R., Bressler, S.L.: Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proc. Natl. Acad. 101, 9849–9854 (2004)

    Article  Google Scholar 

  13. Brunig, I., Sommer, M., Hatt, H., Bormann, J.: Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. 96, 2456–2460 (1999)

    Article  Google Scholar 

  14. Buck, L., Axel, R.: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991)

    Article  Google Scholar 

  15. Buonviso, N., Amat, C., Litaudon, P., Roux, S., Royet, J.P., Farget, V., Sicard, G.: Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. European Journal of Neuroscience 17, 1811–1819 (2003)

    Article  Google Scholar 

  16. Chabaud, P., Ravel, N., Wilson, D.A., Gervais, R.: Functional coupling in rat central olfactory pathways: a coherence analysis. Neuroscience Letters 276, 17–20 (1999)

    Article  Google Scholar 

  17. Cleland, T.A., Morse, A., Yue, E.L., Linster, C.: Behavioral models of odor similarity. Behavioral Neuroscience 116, 222–231 (2002)

    Article  Google Scholar 

  18. Davila, N.G., Blakemore, L.J., Trombley, P.Q.: Dopamine modulates synaptic transmission between rat olfactory bulb neurons in culture. Journal of Neurophysiology 90, 395–404 (2003)

    Article  Google Scholar 

  19. Diprisco, G.V., Freeman, W.J.: Odor-related bulbar EEG spatial pattern-analysis during appetitive conditioning in rabbits. Behavioral Neuroscience 99, 964–978 (1985)

    Article  Google Scholar 

  20. Eeckman, F.H., Freeman, W.J.: Correlations between unit firing and EEG in the rat olfactory system. Brain Research 528, 238–244 (1990)

    Article  Google Scholar 

  21. Ferreyra Moyano, H., Cinelli, A.R., Molina, J.C.: Current generators and properties of early components evoked in rat olfactory cortex. Brain Research Bulletin 15, 237–248 (1985)

    Article  Google Scholar 

  22. Fletcher, M.L., Wilson, D.A.: Olfactory bulb mitral-tufted cell plasticity: Odorant-specific tuning reflects previous odorant exposure. Journal of Neuroscience 23, 6946–6955 (2003)

    Google Scholar 

  23. Fontanini, A., Bower, J.M.: Variable coupling between olfactory system activity and respiration in ketamine/xylazine anesthetized rats. Journal of Neurophysiology 93, 3573–3581 (2005)

    Article  Google Scholar 

  24. Freeman, W.J.: Distribution in time and space of prepyriform electrical activity. Journal of Neurophysiology 22, 644–665 (1959)

    Google Scholar 

  25. Freeman, W.J.: Linear distributed feedback model for prepyriform cortex. Experimental Neurology 10, 525–547 (1964)

    Article  Google Scholar 

  26. Freeman, W.J.: Mass Action in the Nervous System, p. 489. Academic Press, New York (1975)

    Google Scholar 

  27. Freeman, W.J.: Relations between unit activity and evoked potentials in prepyriform cortex of cats. Journal of Neurophysiology 31, 337–348 (1968)

    Google Scholar 

  28. Freeman, W.J., Schneider, W.: Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19, 44–56 (1982)

    Article  Google Scholar 

  29. Gilad, Y., Wiebel, V., Przeworski, M., Lancet, D., Paabo, S.: Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. Plos. Biology 2, 120–125 (2004)

    Article  Google Scholar 

  30. Giocomo, L.M., Hasselmo, M.E.: Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Molecular Neurobiology 36, 184–200 (2007)

    Article  Google Scholar 

  31. Glusman, G., Yanai, I., Rubin, I., Lancet, D.: The complete human olfactory subgenome. Genome Research 11, 685–702 (2001)

    Article  Google Scholar 

  32. Gray, C.M., Skinner, J.E.: Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Experimental Brain Research 69, 378–386 (1988)

    Article  Google Scholar 

  33. Grossman, K.J., Mallik, A.K., Ross, J., Kay, L.M., Issa, N.P.: Glomerular activation patterns and the perception of odor mixtures. European Journal of Neuroscience 27(10), 2676–2685 (2008)

    Article  Google Scholar 

  34. Gulyas, A.I., Toth, K., McBain, C.J., Freund, T.F.: Stratum radiatum giant cells: a type of principal cell in the rat hippocampus. European Journal of Neuroscience 10, 3813–3822 (1998)

    Article  Google Scholar 

  35. Heale, V.R., Vanderwolf, C.H., Kavaliers, M.: Components of weasel and fox odors elicit fast wave bursts in the dentate gyrus of rats. Behavioural Brain Research 63, 159–165 (1994)

    Article  Google Scholar 

  36. Homanics, G.E., DeLorey, T.M., Firestone, L.L., Quinlan, J.J., Handforth, A., Harrison, N.L., Krasowski, M.D., Rick, C.E., Korpi, E.R., Makela, R., Brilliant, M.H., Hagiwara, N., Ferguson, C., Snyder, K., Olsen, R.W.: Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. 94, 4143–4148 (1997)

    Article  Google Scholar 

  37. Imamura, K., Mataga, N., Mori, K.: Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. Journal of Neurophysiology 68, 1986–2002 (1992)

    Google Scholar 

  38. Insausti, R., Herrero, M.T., Witter, M.P.: Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7, 146–183 (1997)

    Article  Google Scholar 

  39. Johnson, B.A., Farahbod, H., Xu, Z., Saber, S., Leon, M.: Local and global chemotopic organization: General features of the glomerular representations of aliphatic odorants differing in carbon number. Journal of Comparative Neurology 480, 234–249 (2004)

    Article  Google Scholar 

  40. Kandel, A., Buzsaki, G.: Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. Journal of Neuroscience 17, 6783–6797 (1997)

    Google Scholar 

  41. Katoh, K., Koshimoto, H., Tani, A., Mori, K.: Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. Journal of Neurophysiology 70, 2161–2175 (1993)

    Google Scholar 

  42. Kay, L.M.: Theta oscillations and sensorimotor performance. Proceedings of the National Academy of Sciences 102, 3863–3868 (2005)

    Article  Google Scholar 

  43. Kay, L.M.: Two species of gamma oscillations in the olfactory bulb: dependence on behavioral state and synaptic interactions. Journal of Integrative Neuroscience 2, 31–44 (2003)

    Article  Google Scholar 

  44. Kay, L. M., Beshel, J., Martin, C.: When good enough is best. Neuron 51, 277–278 (2006)

    Article  Google Scholar 

  45. Kay, L.M., Crk, T., Thorngate, J.: A redefinition of odor mixture quality. Behavioral Neuroscience 119, 726–733 (2005)

    Article  Google Scholar 

  46. Kay, L.M., Freeman, W.J.: Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behavioral Neuroscience 112, 541–553 (1998)

    Article  Google Scholar 

  47. Kay, L.M., Laurent, G.: Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nature Neuroscience 2, 1003–1009 (1999)

    Article  Google Scholar 

  48. Kay, L.M., Sherman, S.M.: An argument for an olfactory thalamus. Trends in Neurosciences 30, 47–53 (2007)

    Article  Google Scholar 

  49. Kay, L.M., Stopfer, M.: Information processing in the olfactory systems of insects and vertebrates. Seminars in Cell & Developmental Biology 17, 433–442 (2006)

    Article  Google Scholar 

  50. Lagier, S., Carleton, A., Lledo, P.M.: Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. Journal of Neuroscience 24, 4382–4392 (2004)

    Article  Google Scholar 

  51. Laurent, G., Wehr, M., MacLeod, K., Stopfer, M., Leitch, B., Davidowitz, H.: Dynamic encoding of odors with oscillating neuronal assemblies in the locust brain. Biological Bulletin 191, 70–75 (1996)

    Article  Google Scholar 

  52. Leon, M., Johnson, B.A.: Olfactory coding in the mammalian olfactory bulb. Brain Research Reviews 42, 23–32 (2003)

    Article  Google Scholar 

  53. Levy, F., Meurisse, M., Ferreira, G., Thibault, J., Tillet, Y.: Afferents to the rostral olfactory bulb in sheep with special emphasis on the cholinergic, noradrenergic and serotonergic connections. Journal of Chemical Neuroanatomy 16, 245–263 (1999)

    Article  Google Scholar 

  54. Liljenstrom, H., Hasselmo, M.E.: Cholinergic modulation of cortical oscillatory dynamics. Journal of Neurophysiology 74, 288–297 (1995)

    Google Scholar 

  55. Linster, C., Johnson, B.A., Yue, E., Morse, A., Xu, Z., Hingco, E.E., Choi, Y., Choi, M., Messiha, A., Leon, M.: Perceptual correlates of neural representations evoked by odorant enantiomers. Journal of Neuroscience 21, 9837–9843 (2001)

    Google Scholar 

  56. Lowry, C.A., Kay, L.M.: Chemical factors determine olfactory system beta oscillations in waking rats. Journal of Neurophysiology 98, 394–404 (2007)

    Article  Google Scholar 

  57. MacLeod, K., Backer, A., Laurent, G.: Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395, 693–698 (1998)

    Article  Google Scholar 

  58. MacLeod, K., Laurent, G.: Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274, 976–979 (1996)

    Article  Google Scholar 

  59. Martin, C., Beshel, J., Kay, L.M.: An olfacto-hippocampal network is dynamically involved in odor-discrimination learning. Journal of Neurophysiology 98, 2196–2205 (2007)

    Article  Google Scholar 

  60. Martin, C., Gervais, R., Chabaud, P., Messaoudi, B., Ravel, N.: Learning-induced modulation of oscillatory activities in the mammalian olfactory system: The role of the centrifugal fibres. Journal of Physiology-Paris 98, 467–478 (2004a)

    Article  Google Scholar 

  61. Martin, C., Gervais, R., Hugues, E., Messaoudi, B., Ravel, N.: Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: A correlate of odor recognition? Journal of Neuroscience 24, 389–397 (2004b)

    Article  Google Scholar 

  62. Martin, C., Gervais, R., Messaoudi, B., Ravel, N.: Learning-induced oscillatory activities correlated to odour recognition: a network activity. European Journal of Neuroscience 23, 1801–1810 (2006)

    Article  Google Scholar 

  63. Martinez, D.P., Freeman, W.J.: Periglomerular cell action on mitral cells in olfactory bulb shown by current source density analysis. Brain Research 308, 223–233 (1984)

    Article  Google Scholar 

  64. McNamara, A.M., Magidson, P.D., Linster, C.: Binary mixture perception is affected by concentration of odor components. Behavioral Neuroscience 121, 1132–1136 (2007)

    Article  Google Scholar 

  65. Mitzdorf, U.: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews 65, 37–100 (1985)

    Google Scholar 

  66. Mombaerts, P., Wang, F., Dulac, C., Chao, S.K., Nemes, A., Mendelsohn, M., Edmondson, J., Axel, R.: Visualizing an olfactory sensory map. Cell 87, 675–686 (1996)

    Article  Google Scholar 

  67. Motokizawa, F.: Odor representation and discrimination in mitral/tufted cells of the rat olfactory bulb. Experimental Brain Research 112, 24–34 (1996)

    Article  Google Scholar 

  68. Neville, K.R., Haberly, L.B.: Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. Journal of Neurophysiology 90, 3921–3930 (2003)

    Article  Google Scholar 

  69. Nusser, Z., Kay, L.M., Laurent, G., Homanics, G.E., Mody, I.: Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. Journal of Neurophysiology 86, 2823–2833 (2001)

    Google Scholar 

  70. Pager, J.: Respiration and olfactory bulb unit activity in the unrestrained rat: statements and reappraisals. Behavioural Brain Research 16, 81–94 (1985)

    Article  Google Scholar 

  71. Pager, J.: Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Research 289, 87–98 (1983)

    Article  Google Scholar 

  72. Rall, W., Shepherd, G.M.: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology 31, 884–915 (1968)

    Google Scholar 

  73. Rinberg, D., Koulakov, A., Gelperin, A.: Sparse odor coding in awake behaving mice. Journal of Neuroscience 26, 8857–8865 (2006a)

    Article  Google Scholar 

  74. Rinberg, D., Koulakov, A., Gelperin, A.: Speed-accuracy tradeoff in olfaction. Neuron 51, 351–358 (2006b)

    Article  Google Scholar 

  75. Rodriguez, R., Kallenbach, U., Singer, W., Munk, M.H.J.: Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. Journal of Neuroscience 24, 10369–10378 (2004)

    Article  Google Scholar 

  76. Rubin, B.D., Katz, L.C.: Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999)

    Article  Google Scholar 

  77. Schoenfeld, T.A., Cleland, T.A.: The anatomical logic of smell. Trends in Neurosciences 28, 620–627 (2005)

    Article  Google Scholar 

  78. Schoppa, N.E.: AMPA/Kainate receptors drive rapid output and precise synchrony in olfactory bulb granule cells. Journal of Neuroscience 26, 12996–13006 (2006a)

    Article  Google Scholar 

  79. Schoppa, N.E.: Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron 49, 271–283 (2006b)

    Article  Google Scholar 

  80. Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Network-Computation in Neural Systems 16, 35–54 (2005)

    Article  Google Scholar 

  81. Shepherd, G.M., Greer, C.A.: Olfactory bulb. In: Shepherd, G. (ed.) The Synaptic Organization of the Brain, p. 719. Oxford University Press, New York (2003)

    Google Scholar 

  82. Shipley, M.T., Adamek, G.D.: The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Research Bulletin 12, 669–688 (1984)

    Article  Google Scholar 

  83. Shipley, M.T., Ennis, M., Puche, A.: Olfactory System. In: Paxinos, G. (ed.) The Rat Nervous System. Academic Press, San Diego (2004)

    Google Scholar 

  84. Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G.: Impaired odour discrimination on desynchronization of odour- encoding neural assemblies. Nature 390, 70–74 (1997)

    Article  Google Scholar 

  85. Uchida, N., Mainen, Z.F.: Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience 6, 1224–1229 (2003)

    Article  Google Scholar 

  86. Uchida, N., Takahashi, Y.K., Tanifuji, M., Mori, K.: Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nature Neuroscience 3, 1035–1043 (2000)

    Article  Google Scholar 

  87. van Groen, T., Wyss, J.M.: Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. Journal of Comparative Neurology 302, 515–528 (1990)

    Article  Google Scholar 

  88. Xu, F., Liu, N., Kida, I., Rothman, D.L., Hyder, F., Shepherd, G.M.: Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb. Proc. Natl. Acad. Sci. 100, 11029–11034 (2003)

    Article  Google Scholar 

  89. Zelcer, I., Cohen, H., Richter-Levin, G., Lebiosn, T., Grossberger, T., Barkai, E.: A cellular correlate of learning-induced metaplasticity in the hippocampus. Cerebral Cortex 16, 460–468 (2006)

    Article  Google Scholar 

  90. Zhang, X., Firestein, S.: The olfactory receptor gene superfamily of the mouse. Nature Neuroscience 5, 124–133 (2002)

    Google Scholar 

  91. Zibrowski, E.M., Vanderwolf, C.H.: Oscillatory fast wave activity in the rat pyriform cortex: relations to olfaction and behavior. Brain Research 766, 39–49 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kay, L.M. (2008). Dynamical Architecture of the Mammalian Olfactory System. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds) Dynamic Brain - from Neural Spikes to Behaviors. NN 2007. Lecture Notes in Computer Science, vol 5286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88853-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88853-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88852-9

  • Online ISBN: 978-3-540-88853-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics