Skip to main content

View to the future and exploration of our Galaxy

  • Chapter
Future Spacecraft Propulsion Systems

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 2142 Accesses

Abstract

Figure 9.1 is a picture of the Andromeda Galaxy (M-31), a galaxy within the neighborhood of the galactic cluster that includes the Milky Way, our Galaxy. The Milky Way is some 100,000 light-years in diameter, with its central bulge about 20,000 light-years in depth. That central bulge contains the very massive black hole that drives the kinetics of the Galaxy [Science News, 2005]. In Chapter 8 we have seen that our Solar System is on one of the spiral arms some 32,000 light-years from the center, and there is a group of stars (about seven) that are within 10 light-years of our sun. Beyond that local group, our galactic stars are much more distant. So even if we travel at the speed of light, our nearby star neighbors are up to a 20-year round-trip away. Can we overcome such distances, or are we bound to our Solar System, or at most our nearby stars? That is the question that dominates our view to the future, after the somewhat pessimistic conclusions in Chapter 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.5 Bibliography

  • Alcubierre, M. (1994) “The Warp Drive: Hyper-fast Travel within General Relativity”, Classic and Quantum Gravity, Vol. 11, L73–L77.

    Article  MathSciNet  Google Scholar 

  • Ambjøn, J., Jurkiewicz, J., and Loll, R. (2008) “The Self-Organizing Quantum Universe”, Scientific American, Vol. 299, No. 1, July, pp. 24–31.

    Google Scholar 

  • Anderson, J.D., Laing, E.L., Liu, E.L., Nieto, M.M., and Turyshev, S.G. (1998) “Indications, from Pioneer 10/11, Galileo and Ulysses Data, of an apparent weak anomalous, long-range acceleration”, Phys. Review Letters, Vol. 81, pp. 2858–2861.

    Article  Google Scholar 

  • Ball, P. (2007) “Feel the force”, Nature, Vol. 447, No. 7146, pp. 772–774.

    Article  Google Scholar 

  • Bilaniuk, Jeff (1962) Personal communication.

    Google Scholar 

  • Boniolo, G. (ed.) (1997) Filosofia della Fisica (Philosophy of Physics), Mondadori, Milan, Chapter 1 (in Italian). [This textbook covers from relativity to logical quantum mechanics. Chapter 1 (pp. 1–167) deals with the Principle of Special Relativity and its “paradoxes” in detail. In N. Falletta’s Paradoxicon, Chapter 20 explains the “twins paradox” for the general public.]

    Google Scholar 

  • Brumfiel, G. (2008a) “Physicists Await Dark Matter Confirmation”, Nature, Vol. 454, No. 7206, August 14, pp. 808–809.

    Article  Google Scholar 

  • Brumfiel, G. (2008b) “The Race to Break the Standard Model”, Nature, Vol. 454, No. 7210, September 11, pp. 156–159.

    Article  Google Scholar 

  • Carroll, S.M. (2008) “The Cosmic Origin of Time’s Arrow”, Scientific American, Vol. 298, No. 6, June, pp. 26–33.

    Google Scholar 

  • Casimir, H.B.G. (1948) “On the Attraction between Two Perfectly Conducting Plates”, Proc. Koninklijke Nederlandse Akademie Wetenschappen, Vol. B51, pp. 793–795.

    Google Scholar 

  • Courtland, R. (2008) “Astronomers Find Universe’s Dimmest Known Galaxy”, NewScientist.com, September 18, 2008, see http://space.newscientist.com/article.ns?id=dn14763⌕int=true

    Google Scholar 

  • Davies, P. (2002) “That Mysterious Flow”, Scientific American, Vol. 287, No. 3, pp. 24–29.

    Google Scholar 

  • DeWitt, B.S. (2003) The Global Approach to Quantum Field Theory, Oxford University Press, New York.

    MATH  Google Scholar 

  • DeWitt, C., and DeWitt, B.C. (eds) (1973) Black Holes, Gordon & Breach, London, 1973. [This is a collection of chapters by Hawking, Carter, Bardeen, Gursky, Novikov, Thorne and Ruffini on black holes theory and data. It is a good snapshot of the initial stage of research on this topic.]

    Google Scholar 

  • Ford, L.H., and Roman, T.A. (2000) “Negative Energy, Wormholes and Warp Drive”, Scientific American, Vol. 282, No. 1, pp. 30–37.

    Google Scholar 

  • Froning, H.D. (2004) “Field Propulsion for Future Flight”, 40th Joint Propulsion Conference, July, Fort Lauderdale, FL, paper AIAA-2004-3761, American Institute of Aeronautics and Astronautics, Washington, DC.

    Google Scholar 

  • Froning, H.D., Jr. (1980) “Propulsion Requirements for a Quantum Interstellar Ramjet”, Journal of the British Interplanetary Society, Vol. 33, No. 7, pp. 265–270.

    Google Scholar 

  • Froning, H.D., Jr. (1983) “Requirements for Rapid Transport to the Further Stars”, Journal ofthe British Interplanetary Society, Vol. 36, pp. 227–230.

    Google Scholar 

  • Froning, H.D., Jr. (1985) “Use of Vacuum Energies for Interstellar Flight”, MDC paper H1496, 36th Congress ofthe International Astronautical Federation, October, Stockholm, Sweden.

    Google Scholar 

  • Froning, H.D., Jr. (1986) “Investigation of Very High Energy Rockets for Future SSTO Vehicles”, MDC paper H1496, 37th Congress of the International Astronautical Federation, October, Innsbruck, Austria.

    Google Scholar 

  • Froning, H.D., Jr. (1987) “Investigation of Antimatter Airbreathing Propulsion for Single-Stage-To-Orbit Ships”, MDC paper H2618, 38th Congress of the International Astronautical Federation, October, Brighton, UK.

    Google Scholar 

  • Froning, H.D., Jr. (1989) “Interstellar Studies—Their Role in Astronautical Progress and the Future of Flight”, MDC paper H5276, 40th Congress of the International Astronautical Federation, October, Malaga, Spain.

    Google Scholar 

  • Froning, H.D., Jr. (2003) “Investigation of a ‘Quantum Ramjet for Interstellar Flight’”, MDAC paper G7887, AIAA/SAE/ASME 17th Joint Propulsion Conference, Colorado Springs, July, CO.

    Google Scholar 

  • Froning, H.D., Jr. and Roach, R.L. (2002) “Preliminary Simulations of Vehicle Interactions with the Quantum Vacuum by Fluid Dynamic Approximations”, paper AIAA-2002-3925, American Institute of Aeronautics and Astronautics, Washington, DC.

    Google Scholar 

  • Froning, H.D., Jr., Barrett, Terence W., and Hathaway, George (1998) “Experiments Involving Specially Conditioned EM Radiation, Gravitation, and Matter”, paper AIAA-98-3138, American Institute of Aeronautics and Astronautics, Washington, DC.

    Google Scholar 

  • Garattini, R. (2008) “Casimir Energy: A Fuel for Traversable Wormholes”, Journal of the British Interplanetary Society, Vol. 61, No. 9, pp. 370–372.

    Google Scholar 

  • Goff, A., and Siegel, J. (2004) “Can Conventional Warp Drive Avoid Temporal Paradox”, 40th Joint Propulsion Conference, July, Fort Lauderdale, FL, paper AIAA 2004-3699, American Institute of Aeronautics and Astronautics, Washington, DC.

    Google Scholar 

  • Goldin, G. and Svetlichny, G. (1994) “Nonlinear Schrödinger equations and the separation property”, Journal ofMathematical Physics B, 3322–3332.

    Google Scholar 

  • Gribbin, J. (1992) In Search for the Edge of Time, Bantam Press, Transworld Editions Ltd, London.

    Google Scholar 

  • Hamilton D.B. (Ed.) (2000) “Breakthrough Energy Physics Research (BEPR) Program Plan”, US Department of Energy, Office of Energy Efficiency & Renewable Energy, Washington, DC, October 2000.

    Google Scholar 

  • Hogan, J. (2007) “Unseen Universe: Welcome to the Dark Side”, Nature, Vol. 448, No. 7151, pp. 240–245.

    Article  Google Scholar 

  • Jones (1982) Personal communication.

    Google Scholar 

  • Kaufmann, W.J., III (1993) Discovering the Universe, W.H. Freeman, New York.

    Google Scholar 

  • Krause, H.G.L. (1960) “Relativistic Rocket Mechanics”, NASA Report TFF-36, Washington, DC.

    Google Scholar 

  • Maccone, C. (2008a) “Computer Tensor Codes to Design the Warp Drive” Journal of the British Interplanetary Society, Vol. 61, No. 9, pp. 358–363.

    Google Scholar 

  • Maccone, C. (2008b) “Focal Probe to 550 or 1000 AU: A Status Review”, Journal of the British Interplanetary Society, Vol. 61, No. 8, pp. 310–314.

    Google Scholar 

  • Maggiore, M., (2007), Gravitational Waves: Vol. 1: Theory and Experiments, Oxford University Press, Oxford, UK.

    Book  Google Scholar 

  • McCulloch, M.E. (2008) “Can the Flyby Anomalies Be Explained by a Modification of Inertia?”, Journal ofthe British Interplanetary Society, Vol. 61, No. 9, pp. 373–378.

    Google Scholar 

  • Miller, A.L. (1981) Albert Einstein’s Special Theory of Relativity, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Millis, M.G. (1997) “Challenge to Create the Space Drive”, AIAA Journal of Propulsion and Power, Vol. 13, No. 5, pp. 577–582.

    Article  Google Scholar 

  • Millis, M.G., and Davis, E.W. (2008) Frontiers of Propulsion Sciences, AIAA Progress in Astronautics and Aeronautics, Vol. 227, AIAA, Reston, VA.

    Google Scholar 

  • Minami, Y. (2008) “Preliminary Theoretical Considerations for Getting Thrust via Squeezed Vacuum”, Journal ofthe British Interplanetary Society, Vol. 61, No. 8, pp. 315–321.

    Google Scholar 

  • Morris, M. and Thorne, K. (1998) “Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity”, Am. J. ofPhysics, Vol. 56, pp. 395–412.

    Article  MathSciNet  Google Scholar 

  • Morris, M., Yurtsever, U., and Thorne, K. (1985) See http://www.zamandayolculuk.com/cetinbal/EinsteinRosenBridges.htm

    Google Scholar 

  • Morris, M., Thorne, K., and Yurtsever, U. (1988) “Worm-holes, Time Machines, and the Weak Energy Conditions”, Phys. Review Letters, Vol. 61, pp. 1446–1449.

    Article  Google Scholar 

  • Obousy, R.K., and Cleaver, G. (2007) “Warp Drive: A NewApproach”, in arXiv:0712.1649v3 [gr-qc], December 16, pp. 1–6.

    Google Scholar 

  • Obousy, R.K., and Cleaver, G. (2008) “Warp Drive: A NewApproach”, Journal ofthe British Interplanetary Society, Vol. 61, No. 9, pp. 364–369.

    Google Scholar 

  • Oppenheimer, J.R. and Volkoff, G.M. (1939) “On massive neutron cores”, Physical Review, Vol. 55, p. 374.

    Article  MATH  Google Scholar 

  • Quigg, C. (2008) “The Coming Revolutions in Particle Physics”, Scientific American, Vol. 298, No. 2, February, pp. 38–45.

    Google Scholar 

  • Rudolph, T.G. (2008) “The Speed of Instantly”, Nature, Vol. 454, No. 7206, pp. 831–832.

    Article  Google Scholar 

  • Rueda, A., and Haisch, B. (1998) “Contribution to Inertial Mass by Reaction of the Vacuum Accelerated Motion”, Foundations of Physics, Vol. 28, No. 6, pp. 1057–1108.

    Article  MathSciNet  Google Scholar 

  • Saenger, E. (1956) “Die Erreichbarkeit der Fixsterne”, in Rendiconti del VII Congresso Internazionale Astronautico, Associazione Italiana Razzi (Proceedings of the VII International Astronautical Congress), Rome, pp. 97–113. [Also in Mitteilungen der Landesgruppe Nordbayern der DGRR vom 13.05.1958.]

    Google Scholar 

  • Sagan, C. (1985) Contact, Pocket Books, New York.

    Google Scholar 

  • Salart, D., Baas, A., Branciard, C., Gisin, N., and Zbinden, H. (2008) “Testing the Speed of Spooky Action at a Distance”, Nature, Vol. 454, No. 7206, pp. 861–864.

    Article  Google Scholar 

  • Science News (2005) GALEX Team, JPL/NASA, M. Seibert/Caltech, Science News, Vol. 167, No. 8. Available at http://www.sciencenews.org/articles/20050219/toc.asp

    Google Scholar 

  • Scientific American (2002) Vol. 287, No. 3, pp. 20–54. [This is a special issue dedicated to the concept of time.]

    Google Scholar 

  • Tajmar, M. (2003) Advanced Space Propulsion Systems, Springer-Verlag, New York.

    Google Scholar 

  • Tajmar, M., and Bertolami, O. (2005) “Hypothetical Gravity Control and Possible Influence on Space Propulsion”, J. Propulsion and Power, Vol. 21, No. 4, pp. 692–696.

    Article  Google Scholar 

  • Tajmar, M., Plesescu, F., Seifert, B., Schnitzer, R., and Vasilijevich, I. (2008a) Search for Frame-Dragging-Like Signals close to Spinning Superconductors”, in: Proc. 2nd Internat. Conf. on Time and Matter, edited by M.J. O’Loughlin, University of Nova Gorica Press, Nova Gorica, Slovenia, pp. 49–74.

    Google Scholar 

  • Tajmar, M., Plesescu, F., Seifert, B., Schnitzer, R., and Vasilijevich, I. (2008b) “Investigation of Frame-Dragging-Like Signals from Spinning Superconductors Using Laser Gyroscopes”, in: Proceedings of STAIF 2008, AIP Conference Proceedings CP 969, American Institute of Physics, Melville, NY, pp. 1080–1090.

    Google Scholar 

  • Tanka, S. (1960) Personal communication.

    Google Scholar 

  • Thorne, K.S. (1995) Black Holes and Time Warp: Einstein’s Outrageous Legacy, W.W. Norton, New York.

    Google Scholar 

  • Visser, M. (1989) “Traversable Wormholes: Some Simple Examples”, Physical Review D, Vol. 39, pp. 3182–3184.

    Article  MathSciNet  Google Scholar 

  • Woodward, J.F. (2001) “Gravity, Inertia and Quantum Vacuum Zero Point Fields”, Foundations ofPhysics, Vol. 31, No. 5, pp. 819–835.

    Article  MathSciNet  Google Scholar 

  • Woodward, J.F. (2004) “Flux Capacitors and the Origin of Inertia”, Foundations of Physics, Vol. 34, No. 10, pp. 1475–1513.

    Article  Google Scholar 

  • Yam, P. (1997) “Exploiting Zero-Point Energy”, Scientific American, Vol. 277, No. 6, December, pp. 54–57.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2009). View to the future and exploration of our Galaxy. In: Future Spacecraft Propulsion Systems. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88814-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88814-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88813-0

  • Online ISBN: 978-3-540-88814-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics