Skip to main content

Fundamental Concepts of Ion-Beam Processing

  • Chapter
  • First Online:
Book cover Materials Science with Ion Beams

Part of the book series: Topics in Applied Physics ((TAP,volume 116))

Abstract

The basic concepts underlying the response of materials to ion-beam irradiation are outlined. These include the slowing of energetic ions, the creation of defects, sputtering, ion-beam mixing, the acceleration of kinetic processes, and phase transformations. Several examples are cited to illustrate how each of these concepts can be exploited to modify materials in ways not easily achieved, or not even possible, by more conventional processing methods. The chapter attempts to provide a physical understanding of the basic effects of ion-beam irradiation on materials, to enable readers in other areas of research to better understand the more technical chapters that follow, and to develop ideas relevant to their own disciplines. We provide references to more quantitative treatments of the topics covered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Sigmund, Particle Penetration and Radiation Effects (Springer, Heidelberg, 2006), Chap. 2

    Google Scholar 

  2. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods B 216, 1 (2004)

    Article  ADS  Google Scholar 

  3. L. Civale et al., Phys. Rev. Lett. 67, 648 (1991)

    Article  ADS  Google Scholar 

  4. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids. Stopping and Ranges of Ions in Matter, vol. 1 (Pergamon, New York, 1984)

    Google Scholar 

  5. R.S. Averback, R. Benedek, K.L. Merkle, Phys. Rev. B 18, 4156 (1978)

    Article  ADS  Google Scholar 

  6. M.J. Norgett, M.T. Robinson, I.M. Torrens, Nucl. Eng. Des. 33, 500 (1975)

    Google Scholar 

  7. R.S. Averback, R. Benedek, K.L. Merkle, Phys. Rev. B 18, 4156 (1978)

    Article  ADS  Google Scholar 

  8. D.J. Bacon, in Computer Simulation of Materials, ed. by H.O. Kirchner et al. (Kluwer Academic, Dordrecht, 1996), p. 198

    Google Scholar 

  9. H.H. Andersen, in Ion Implantation and Beam Processing, ed. by J.S. Williams, J.M. Poate (Academic Press, New York, 1984), Chap. 6

    Google Scholar 

  10. P. Sigmund, N.Q. Lam, in Fundamentals Processes in Sputtering of Atoms and Molecules (SPUT’92), ed. by P. Sigmund, Medd. Kgl. Dan. Vindensk. 43 (1992), 255

    Google Scholar 

  11. H.H. Andersen, Appl. Phys. 18, 131 (1979)

    Article  ADS  Google Scholar 

  12. R.S. Averback, T. Diaz de la Rubia, in Solid State Physics, vol. 51, ed. by H. Ehrenreich, F. Spaepen (Academic Press, New York, 1998), p. 282

    Google Scholar 

  13. H.L. Zhu, R.S. Averback, M. Nastasi, Philos. Mag. A 71, 735 (1995)

    Article  ADS  Google Scholar 

  14. C.P. Flynn, R.S. Averback, Phys. Rev. B 38, 7118 (1988)

    Article  ADS  Google Scholar 

  15. A. Caro, M. Victoria, Phys. Rev. A 40, 2287 (1989)

    Article  ADS  Google Scholar 

  16. D.M. Duffy, A.M. Rutherford, J. Phys. Condens. Matter 19, 016207 (2007)

    Article  ADS  Google Scholar 

  17. R. Sizmann, J. Nucl. Mater. 69/70, 386 (1978)

    Article  ADS  Google Scholar 

  18. J. Philibert, Atomic movements Diffusion and Mass Transport in Solids (Les Editions de Physique, Les Ulis Cedex A, 1991), p. 497

    Google Scholar 

  19. J.L. Bocquet, N.V. Doan, G. Martin, Philos. Mag. 85, 559 (2005)

    Article  ADS  Google Scholar 

  20. N.V. Doan, G. Martin, Phys. Rev. B 67, 134107 (2003)

    Article  ADS  Google Scholar 

  21. K. Cho et al., Appl. Phys. Lett. 47, 1321 (1985)

    Article  ADS  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, U. Littmack, The Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985)

    Google Scholar 

  23. P. Ehrhart, in Interactions of Atomic Defects in Metals and Alloys, ed. by H. Ullmaier. Landolt-Bornstein, New Series III, vol. 25 (Springer, Berlin, 1991), p. 88, Chap. 2

    Chapter  Google Scholar 

  24. P. Ehrhart, J. Nucl. Mater. 216, 170 (1994)

    Article  ADS  Google Scholar 

  25. E.P. EerNisse, Appl. Phys. Lett. 18, 581 (1971)

    Article  ADS  Google Scholar 

  26. M. Bruel, Electron Lett. 31, 1201 (1995)

    Article  Google Scholar 

  27. L. Cartz, Radiat. Eff. Defects Solids 54, 57 (1981)

    Article  Google Scholar 

  28. S. Klaumunzer, G. Schuhmacher, Phys. Rev. Lett. 51, 1987 (1983)

    Article  ADS  Google Scholar 

  29. C.A. Volkert, J. Appl. Phys. 74, 7107 (1983)

    Article  ADS  Google Scholar 

  30. S.G. Mayr, R.S. Averback, Phys. Rev. Lett. 87, 196106 (2001)

    Article  ADS  Google Scholar 

  31. E. Snoeks, T. Weber, A. Cacciato, A. Polman, J. Appl. Phys. 78, 4723 (1995)

    Article  ADS  Google Scholar 

  32. H. Trinkaus, J. Nucl. Mater. 223, 196 (1995)

    Article  ADS  Google Scholar 

  33. H. Trinkaus, J. Nucl. Mater. 246, 244 (1997)

    Article  ADS  Google Scholar 

  34. S.G. Mayr, Y. Ashkenazy, K. Albe, R.S. Averback, Phys. Rev. Lett. 90, 055505 (2003)

    Article  ADS  Google Scholar 

  35. M. Ghaly, R.S. Averback, Phys. Rev. Lett. 72, 364 (1994)

    Article  ADS  Google Scholar 

  36. S.G. Mayr, R.S. Averback, Phys. Rev. B 68, 214105 (2003)

    Article  ADS  Google Scholar 

  37. M. Morgenstern, T. Michely, G. Cosma, Philos. Mag. 79, 775 (1999)

    Article  ADS  Google Scholar 

  38. S.G. Mayr, R.S. Averback, Phys. Rev. Lett. 87, 6106 (2001)

    ADS  Google Scholar 

  39. T.G. Bifano, H.T. Johnson, P. Bierden, R. Mali, J. Microelectromech. Syst. 11, 592 (2002)

    Article  Google Scholar 

  40. H. Trinkaus, A.I. Ryazanov, Phys. Rev. Lett. 74, 5072 (1995)

    Article  ADS  Google Scholar 

  41. Y.S. Lee, Ph.D. thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  42. S. Siegel, Phys. Rev. 75, 1823 (1949)

    Article  ADS  Google Scholar 

  43. L. Wei, Y.S. Lee, R.S. Averback, C.P. Flynn, Phys. Rev. Lett. 84, 6046 (2000)

    Article  ADS  Google Scholar 

  44. G.J. Dienes, Acta Metall. 3, 549 (1955)

    Article  Google Scholar 

  45. L. Néel, J. Paulevé, R. Pauthenet, J. Laugier, D. Dautreppe, J. Appl. Phys. 35, 873 (1964)

    Article  ADS  Google Scholar 

  46. H. Bernas, J.-Ph. Attané, K.-H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chappert, Y. Samson, Phys. Rev. Lett. 91, 077203 (2003)

    Article  ADS  Google Scholar 

  47. L.C. Wei, R.S. Averback, J. Appl. Phys. 81, 613 (1997)

    Article  ADS  Google Scholar 

  48. B.Y. Tsaur, J.W. Mayer, Appl. Phys. Lett. 37, 389 (1980)

    Article  ADS  Google Scholar 

  49. J.L. Brimhall, E.P. Simonen, Nucl. Instrum. Methods B 16, 187 (1986)

    Article  ADS  Google Scholar 

  50. P.R. Okamoto, N.Q. Lam, L.E. Rehn, in Solid State Physics, vol. 52, ed. by H. Ehrenreich, F. Spaepen (Academic Press, New York, 1999), p. 1

    Google Scholar 

  51. G. Xu, J. Koike, M. Meshii, P.R. Okamoto, in The 47th Annual Meeting of the Electron Microscopy Society of America (San Francisco Press, San Francisco, 1989), p. 658

    Google Scholar 

  52. S. Banerjee, K. Urban, M. Wilkens, Acta Metall. 32, 299 (1984)

    Article  Google Scholar 

  53. Y. Adda, M. Beyeler, G. Brebec, Thin Solid Films 25, 107 (1975)

    Article  ADS  Google Scholar 

  54. G. Martin, P. Bellon, Solid State Phys. 50, 189 (1997)

    Article  Google Scholar 

  55. G. Martin, Phys. Rev. B 30, 1424–1436 (1984)

    Article  ADS  Google Scholar 

  56. R. Enrique, P. Bellon, Phys. Rev. B 60, 14649 (1999)

    Article  ADS  Google Scholar 

  57. S. Müller, C. Abromeit, S. Matsumura, N. Wanderka, H. Wollengberger, J. Nucl. Mater. 271–272, 241 (1999)

    Article  Google Scholar 

  58. O. Trushin, A. Karim, A. Kara, T.S. Rahman, Phys. Rev. B 72, 115401 (2005)

    Article  ADS  Google Scholar 

  59. K. Sastry, D.D. Johnson, D.E. Goldberg, P. Bellon, Phys. Rev. B 72, 085438 (2005)

    Article  ADS  Google Scholar 

  60. M.R. Sorensen, A.F. Voter, J. Chem. Phys. 112, 9599–9606 (2000)

    Article  ADS  Google Scholar 

  61. Y. Shim, J.G. Amar, B.P. Uberuaga, A.F. Voter, Phys. Rev. B 76, 205439 (2007)

    Article  ADS  Google Scholar 

  62. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)

    Article  Google Scholar 

  63. Q. Bronchart, Y. Le Bouar, A. Finel, Phys. Rev. Lett. 100, 015702 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Averback .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Averback, R.S., Bellon, P. (2009). Fundamental Concepts of Ion-Beam Processing. In: Bernas, H. (eds) Materials Science with Ion Beams. Topics in Applied Physics, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88789-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88789-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88788-1

  • Online ISBN: 978-3-540-88789-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics