Skip to main content

A Tamper-Evident Voting Machine Resistant to Covert Channels

  • Conference paper
Provable Security (ProvSec 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5324))

Included in the following conference series:

  • 712 Accesses

Abstract

To provide a high level of security guarantee cryptography is introduced into the design of the voting machine. The voting machine based on cryptography is vulnerable to attacks through covert channels. An adversary may inject malicious codes into the voting machine and make it leak vote information unnoticeably by exploiting the randomness used in encryptions and zero-knowledge proofs. In this paper a voting machine resistant to covert channels is designed. It has the following properties: Firstly, it is tamper-evident. The randomness used by the voting machine is generated by the election authority. The inconsistent use of the randomness can be detected by the voter from examining a destroyable verification code. Even if malicious codes are run in the voting machine attacks through subliminal channels are thwarted. Next, it is voter-verifiable. The voter has the ability to verify if the ballot cast by the machine is consistent with her intent without doing complicated cryptographic computation. Finally, the voting system is receipt-free. Vote-buying and coercion are prevented.

This work is supported by 973 Program (2007CB311201), National Natural Science Foundation of China (No. 60503006), and NSFC-KOSEF Joint Research Project (No. 60611140543).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004), http://votehere.com/old/vhti/documentation/vsv-2.0.3638.pdf

  2. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Choi, J.Y., Golle, P., Jakobsson, M.: Auditable privacy: on tamper-evident mix networks. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 126–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-Authourity Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    Google Scholar 

  5. ElGamal, T.: A Public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  6. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Class. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)

    Google Scholar 

  7. Pedersen, T.P.: A threshold cryptosystem without a trusted third party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)

    Google Scholar 

  8. Fouque, P.A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Damgard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, W., Hao, T., Zheng, D., Chen, K., Chen, X. (2008). A Tamper-Evident Voting Machine Resistant to Covert Channels. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds) Provable Security. ProvSec 2008. Lecture Notes in Computer Science, vol 5324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88733-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88733-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88732-4

  • Online ISBN: 978-3-540-88733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics