Skip to main content

On Proofs of Security for DAA Schemes

  • Conference paper
Provable Security (ProvSec 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5324))

Included in the following conference series:

Abstract

Direct anonymous attestation (DAA) is a mechanism for a remote user to provide a verifier with some assurance it is using software and/or hardware from trusted sets of software and/or hardware respectively. In addition, the user is able to control if and when a verifier is able to link two signatures: to determine whether or not they were produced by the same platform. The verifier is never able to tell which which particular platform produced a given signature or pair of signatures.

We first address a problem with the proof of security for the original DAA scheme of Brickell, Camenisch and Chen. In particular, we construct an adversary that can tell if its in a simulation or not. We then provide the necessary changes to the simulator such that the adversary can no longer do this and prove this fact, hence repairing the proof.

Our main contribution is a security analysis of the Chen, Morrissey and Smart (CMS) DAA scheme. This scheme uses asymmetric bilinear pairings and was proposed without a proof of security. We use the well established simulation based security model of Brickell, Camenisch and Chen and also use a similar proof technique to theirs. We prove the CMS scheme is secure in the random oracle model relative to the bilinear Lysyanskaya, Rivest, Sahai and Wolf (LRSW) assumption, the hardness of discrete logarithms in the groups used and collision resistance of the hash functions used in the scheme.

The second and third author would like to thank EPSRC, eCrypt and HP Labs for partially supporting the work in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backes, M., Maffei, M., Unruh, D.: Zero Knowledge in the Applied Pi–Calculus and Automated Verification of the Direct Anonymous Attestation Protocol. Cryptology ePrint Archive. Report 2007/289 (2007), http://eprint.iacr.org/2007/289

  2. Balfe, S., Lakhani, A.D., Paterson, K.G.: Securing Peer-to-Peer Networks using Trusted Computing. In: Mitchell, C. (ed.) Trusted Computing, ch. 10, pp. 271–298. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  3. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, pp. 132–145. ACM Press, New York (2004)

    Google Scholar 

  4. Brickell, E., Chen, L., Li, J.: Simplified Security Notions for Direct Anonymous Attestation and a Concrete Scheme from Pairings. Cryptology ePrint Archive. Report 2008/104 (2008), http://eprint.iacr.org/2008/104

  5. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from Bilinear Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Camenisch, J., Groth, J.: Group Signatures: Better efficiency and new Theoretical Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 122–135. Springer, Heidelberg (2005)

    Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)

    Google Scholar 

  8. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Chen, L., Morrissey, P., Smart, N.P.: Pairings in Trusted Computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Ge, H., Tate, S.R.: A Direct Anonymous Attestation Scheme for Embedded Devices. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, Springer, Heidelberg (2007)

    Google Scholar 

  11. Leung, A., Mitchell, C.J.: Ninja: Non-Identity Based, Privacy Preserving Authentication for Ubiquitous Environments. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 73–90. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Smyth, B., Chen, L., Ryan, M.: Direct Anonymous Attestation (DAA): Ensuring Privacy with Corrupt Administrators. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Morrissey, P., Smart, N.P. (2008). On Proofs of Security for DAA Schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds) Provable Security. ProvSec 2008. Lecture Notes in Computer Science, vol 5324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88733-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88733-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88732-4

  • Online ISBN: 978-3-540-88733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics