Skip to main content

Nanoforce and Imaging

  • Chapter
  • First Online:
Nanoscience

Abstract

The invention of the scanning tunneling microscope by Binnig and coworkers [1], who won the Nobel Prize for Physics in 1986, marked the beginning of a new type of microscopy, called near-field or local probe microscopy. These microscopes are powerful tools for studying the surface properties of samples. They all involve scanning the sample surface with a probe or tip at a distance of nanometric order and determining point by point the value of some physical quantity, e.g., electron transfer (scanning tunneling microscope STM), photon transfer (scanning near-field optical microscope SNOM), or an interaction force (atomic force microscope AFM) [2]. AFM can achieve atomic resolution on crystal samples in air or vacuum, but its development in structural biology comes from the fact that it can be made to work in a liquid medium. It is used to observe the surface of biological samples ranging from complex biological structures like plasma membranes in eukaryotic cells to single molecules. At the present time, it is the only technique able to obtain subnanometric resolutions in a physiological environment. Used initially for imaging, it can also serve as a tool for dissection and manipulation on a molecular scale, or for measuring intra- and intermolecular interaction forces (see Sect. 8.3). Through these wide-ranging applications, AFM has become an indispensable tool in the development of nanobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section One. Molecular and Cellular Imaging Using AFM

  1. Binnig, G., et al.: Phys. Rev. Lett. 49, 57–61 (1982)

    Article  ADS  Google Scholar 

  2. Binnig, G., Quate, C.F., Gerber, C.: Phys. Rev. Lett. 56 (9), 930–933 (1986)

    Article  ADS  Google Scholar 

  3. Fotiadis, D., et al.: Micron 33 (4), 385–397 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Hansma, H.G.: Annu. Rev. Phys. Chem. 52, 71–92 (2001)

    Article  CAS  ADS  Google Scholar 

  5. Hansma, H.G., Kasuya, K., Oroudjev, E.: Current Opinion in Structural Biology 14 (3), 380–385 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Bustamante, C., et al.: J. Biol. Chem. 274 (24), 16665–16668 (1999)

    Article  CAS  Google Scholar 

  7. Jiao, Y.K., et al.: J. Mol. Biol. 314 (2), 233–243 (2001)

    Article  CAS  MathSciNet  Google Scholar 

  8. Abdelhady, H.G., et al.: Nucleic Acids Res. 31 (14), 4001–4005 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Virstedt, J., et al.: J. Struct. Biol. 148 (1), 66–85 (2004)

    Article  CAS  Google Scholar 

  10. Mou, J.X., et al.: FEBS Lett. 381 (1–2), 161–164 (1996)

    Article  Google Scholar 

  11. Sheng, S.T., et al.: J. Biol. Chem. 278 (41), 39892–39896 (2003)

    Article  CAS  Google Scholar 

  12. Shao, Z., Shi, D., Somlyo, A.V.: Biophys. J. 78 (2), 950–958 (2000)

    CAS  Google Scholar 

  13. Vinckier, A., et al.: Ultramicroscopy 57 (4), 337–343 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Gale, M., et al.: Biophys. J. 68 (5), 2124–2128 (1995)

    CAS  MathSciNet  Google Scholar 

  15. Christiansen, D.L., Huang, E.K., Silver, F.H.: Matrix Biology 19 (5), 409–420 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Round, A.N., et al.: J. Struct. Biol. 145 (3), 246–253 (2004).

    Article  CAS  Google Scholar 

  17. Chen, C.H., Hansma, H.G.: J. Struct. Biol. 131 (1), 44–55 (2000)

    Article  CAS  Google Scholar 

  18. Ding, T.T., Harper, J.D.: Methods Enzymol. 309, 510–525 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Moreno-Herrero, F., et al.: Biophys. J. 86 (1Pt1), 517–525 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Wagner, K., et al.: Biophys. J. 87 (1), 386–395 (2004)

    CAS  Google Scholar 

  21. Milhiet, P.E., Giocondi, M.C., Le Grimellec, C.:www.thescientificworld.com 3, 59–74 (2003)

  22. Engel, A., Gaub, H.E., Muller, D.J.: Curr. Biol. 9 (4), R133–136 (1999)

    CAS  Google Scholar 

  23. Milhiet, P.E., et al.: Single Mol. 2, 109–112 (2001)

    Article  CAS  ADS  Google Scholar 

  24. Vie, V., et al.: J. Membr. Biol. 180 (3), 195–203 (2001)

    Article  CAS  Google Scholar 

  25. Saslowsky, D.E., et al.: J. Biol. Chem. 277 (30), 26966–26970 (2002)

    Article  CAS  Google Scholar 

  26. Milhiet, P.E., et al.: EMBO Reports 3 (5), 485–490 (2002)

    Google Scholar 

  27. Giocondi, M.C., et al.: J. Struct. Biol. 131 (1), 38–43 (2000)

    Article  CAS  Google Scholar 

  28. Le Grimellec, C., et al.: Scanning Microsc. 9 (2), 401–411 (1995)

    Google Scholar 

  29. Scheuring, S., Rigaud, J.L., Sturgis, J.N.: EMBO J. 23 (21), 4127–4133 (2004)

    Google Scholar 

  30. Hoh, J.H., et al.: Biophys. J. 65 (1), 149–163 (1993)

    CAS  MathSciNet  Google Scholar 

  31. Fotiadis, D., et al.: Nature 421 (6919), 127–128 (2003)

    Google Scholar 

  32. Shahin, V., et al.: Faseb. J. 15 (11), 1895–1901 (2001)

    CAS  Google Scholar 

  33. Gould, S.A.C., et al.: J. Vac. Sci. Technol. A8, 369–373 (1990)

    Article  ADS  Google Scholar 

  34. Butt, H.J., et al.: J. Struct. Biol. 105 (1–3), 54–61 (1990)

    Article  CAS  Google Scholar 

  35. Radmacher, M.: IEEE Eng. Med. Biol. Mag. 16 (2), 47–57 (1997)

    Article  CAS  Google Scholar 

  36. Benoit, M., et al.: Nat. Cell Biol. 2 (6), 313–317 (2000)

    CAS  Google Scholar 

  37. Stroh, C., et al.: Proc. Natl. Acad. Sci. USA 101 (34), 12503–12507 (2004)

    Article  CAS  ADS  Google Scholar 

  38. Le Grimellec, C., et al.: Biophys. J. 67 (1), 36–41 (1994)

    Google Scholar 

  39. Radmacher, M., et al.: Science 257 (5078), 1900–1905 (1992)

    Google Scholar 

  40. Dufrene, Y.F.: Micron 32 (2), 153–165 (2001)

    Google Scholar 

  41. Crèvecoeur, M., et al.: Protoplasma 212, 46–55 (2000)

    Article  Google Scholar 

  42. Lesniewska, E., et al.: Methods in Cell Biology 68, 51–65 (2002)

    Article  PubMed  Google Scholar 

  43. Dufrene, Y.F.: Nature Reviews Microbiology 2 (6), 451–460 (2004)

    Google Scholar 

  44. Horber, J.K., et al.: Scanning Microsc. 6 (4), 919–929; discussion 929–930 (1992)

    Google Scholar 

  45. Schneider, S.W., et al.: Proc. Natl. Acad. Sci. USA 94 (1), 316–321 (1997)

    Article  CAS  ADS  Google Scholar 

  46. Le Grimellec, C., et al.: Biophys. J. 75 (2), 695–703 (1998)

    Google Scholar 

  47. Velegol, S.B., Logan, B.E.: Langmuir 18, 5256–5262 (2002)

    Article  CAS  Google Scholar 

  48. Le Grimellec, C., et al.: J. Comp. Neurol. 451 (1), 62–69 (2002)

    Article  Google Scholar 

  49. Hansma, P.K., et al.: Science 243 (4891), 641–643 (1989)

    Google Scholar 

  50. Shevchuk, A.I., et al.: Biophys. J. 81 (3), 1759–1764 (2001)

    CAS  Google Scholar 

  51. Burnham, N.A., Colton, R.J.: J. Vac. Sci. Technol. A7, 2906–2913 (1989)

    Article  ADS  Google Scholar 

  52. Weisenhorn, A., et al.: Nanotechnology 4, 106–113 (1993)

    Article  CAS  ADS  Google Scholar 

  53. Matzke, R., Jacobson, K., Radmacher, M.: Nat. Cell. Biol. 3 (6), 607–610 (2001)

    CAS  Google Scholar 

  54. Rotsch, C., et al.: Ultramicroscopy 86 (1–2), 97–106 (2001)

    Google Scholar 

  55. Mahaffy, R.E., et al.: Biophys. J. 86 (3), 1777–1793 (2004)

    CAS  Google Scholar 

  56. Zhang, X., et al.: Am. J. Physiol. Heart Circ. Physiol. 286 (1), H359–367 (2004)

    Article  CAS  Google Scholar 

  57. Tokunaga, M., et al.: Biochem. Biophys. Res. Commun. 231 (3), 566–569 (1997)

    Article  CAS  Google Scholar 

  58. Tamayo, J., et al.: Biophys. J. 81 (1), 526–537 (2001)

    CAS  Google Scholar 

  59. Jeney, S., Florin, E.L., Horber, J.K.: Methods Mol. Biol. 164, 91–108 (2001)

    CAS  Google Scholar 

  60. Burns, A.R.: Langmuir 19 (20), 8358–8363 (2003)

    Google Scholar 

  61. Gradinaru, C.C., et al.: Ultramicroscopy 99 (4), 235–245 (2004)

    Google Scholar 

  62. Kassies, R., et al.: J. Microscopy Oxford 217, Part 1, 109–116 (2005)

    Google Scholar 

  63. Cho, S.J., et al.: Cell. Biol. Int. 26 (1), 35–42 (2002)

    CAS  Google Scholar 

  64. Hansma, H.G., et al.: Science 256 (5060), 1180–1184 (1992)

    Google Scholar 

  65. Thalhammer, S., et al.: J. Struct. Biol. 119 (2), 232–237 (1997)

    Article  CAS  Google Scholar 

  66. Obataya, I.et al.: Nano Letters 5 (1), 27–30 (2005)

    Google Scholar 

  67. Milhiet, P.E., et al.: Single Mol. 3 (2–3), 136–141 (2002)

    Google Scholar 

Section Two. Surface Force Apparatus and Micromanipulation

  1. Israelachvili, J.N., Adams, G.E.: J. Chem. Soc. Faraday I 74, 975–1001 (1978)

    Article  CAS  Google Scholar 

  2. Cabane, B., Hénon, S.: Liquides, solutions, dispersions, émulsions, gels, Belin, Paris (2003)

    Google Scholar 

  3. Verwey, E.J.W., Overbeek, J.Th.G.: Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948)

    Google Scholar 

  4. Israelachvili, J.N.: Intermolecular and Surface Forces, Academic Press Limited, London (1991)

    Google Scholar 

  5. Homola, A.M., Israelachvili, J.N., Gee, M.L., McGuiggan, P.M., J. Tribology: Transactions of the ASME 111, 675–682 (1989)

    Article  CAS  Google Scholar 

  6. Israelachvili, J.N.: J. Colloid. Interface Sci. 44, 259–272 (1973)

    Article  CAS  Google Scholar 

  7. Derjaguin, B.V.: Kolloid-Z 69, 155 (1934)

    Article  Google Scholar 

  8. Israelachvili, J.N., Tabor, D.: Proc. Roy. Soc. London Series A: Mathematical and Physical Sci. 331, 19–38 (1972)

    Article  CAS  ADS  Google Scholar 

  9. Israelachvili, J.N., Pashley, R.M.: Nature 306, 249–250 (1983)

    Article  CAS  ADS  Google Scholar 

  10. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B., Leckband, D.: Proc. Natl. Acad. Sci. 96, 11820–11824 (1999)

    Article  CAS  ADS  Google Scholar 

  11. Pincet, F., Perez, E., Bryant, G., Lebeau, L., Mioskowski, C.: Phys. Rev. Lett. 73, 2780–2784 (1994)

    Article  CAS  ADS  Google Scholar 

  12. Johnson, K.L., Kendall, K., Roberts, A.D.: Proc. Roy. Soc. London A 324, 301 (1971)

    Article  CAS  ADS  Google Scholar 

  13. Nalaskowski, J., Veeramasuneni, S., Hupka, J., Miller, J.D.: J. Adh. Sci. Nd. Tech. 13, 1519–1533 (1999)

    Article  CAS  Google Scholar 

  14. Evans, E., Ritchie, K., Merkel, R.: Biophys. J. 68, 2580–2587 (1995)

    CAS  Google Scholar 

  15. Merkel, R., Nassoy, P., Leung, A., Ritchie, K., Evans, E.: Nature 397 (6714), 50–53 (1999)

    Google Scholar 

  16. Chu, Y.S., Thomas, W.A., Eder, O., Pincet, F., Perez, E., Thiery, J.-P., Dufour, S.: J. Cell. Biol. 167, 1163–1194 (2004)

    Google Scholar 

  17. Chu, Y.S., Dufour, S., Thiery, J.-P., Perez, E., Pincet, F., Phys. Rev. Lett. 94, 028102 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Evans, E.: Colloid Surfaces 43, 327–347 (1990)

    Article  CAS  Google Scholar 

  19. Pincet, F., Perez, E., Loudet, J.C., Lebeau, L.: Phys. Rev. Lett. 87, 178101–178114 (2001)

    Article  CAS  ADS  Google Scholar 

  20. Gourier, C., Pincet, F., Perez, E., Zhang, Y.-M., Mallet, J.-M., Sinaÿ, P.: Angew. Chemie 44 (11), 1683–1687 (2005)

    Google Scholar 

Section Three. Contact and Tapping Mode Force Microscopy: General References for Near-Field and Atomic Force Microscopy

  1. Binnig, G., Rohrer, H.: Helv. Phys. Acta 55, 726 (1982); Nobel Lecture, Rev. Mod. Phys. 59, 615 (1987)

    Google Scholar 

  2. Eigler, D.M., Schweitzer, E.K.: Nature 344, 524 (1990)

    Article  CAS  ADS  Google Scholar 

  3. Binnig, G., Quate, C.F., Gerber, C.: Phys. Rev. Lett. 56, 930 (1986)

    Article  PubMed  ADS  Google Scholar 

  4. Tsien, R.Y.: Imagining imaging’s future, Nature Cell Biology 5, S16–S21, September (2003)

    Google Scholar 

  5. Aimé, J.P., Boisgard, R., Nony, L., Couturier, G.: Phys. Rev. Lett. 89, 3388 (1999)

    Article  ADS  Google Scholar 

  6. Albrecht, T.R., Grütter, P., Horne, D., Rugar, D.: J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  7. Anczycowsky, B., Krüger, D., Fuchs, H.: Phys. Rev. B 53, 15485 (1996)

    Article  ADS  Google Scholar 

  8. Boisgard, R., Michel, D., Aimé, J.P.: Surf. Sci. 401, 199 (1998)

    Article  CAS  ADS  Google Scholar 

  9. Dubourg, F., Marsaudon, S., Aimé, J.P., Leclère, Ph., Lazzaroni, R.: Eur. Phys. J. E 6, 387 (2001)

    Article  CAS  Google Scholar 

  10. Dubourg, F., Aimé, J.P., Couturier, G., Salardenne, J.: Eur. Phys. Lett. 62, 671 (2003)

    Article  CAS  ADS  Google Scholar 

  11. Dürig, U.. Appl. Phys. Lett. 76, 1203 (2000)

    Article  ADS  Google Scholar 

  12. Garcia, R., Perez, R.: Surf. Sci. Reports 47, 197 (2002)

    Article  MATH  CAS  ADS  Google Scholar 

  13. Giessibl, F.J.: Science 267, 68–71 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Giessibl, F.J., Bielefeldt, H., Hembacher, S., Mannhart, J.: Appl. Surf. Science 140, 352 (1999)

    Article  CAS  ADS  Google Scholar 

  15. Gleyzes, P., Kuo, P.K., Boccara, A.C.: Appl. Phys. Lett. 58, 25 (1991)

    Article  Google Scholar 

  16. Horowitz, P., Hill, W.: The Art of Electronics, Cambridge University Press (1989)

    Google Scholar 

  17. Kitamura, S., Iwatsuki, M.: Jpn. J. Appl. Phys. Part 2 34, L145 (1995)

    Google Scholar 

  18. Sugawara, Y., Ohta, M., Ueyama, H., Moriat, S.: Science 270, 1646 (1995)

    Article  CAS  ADS  Google Scholar 

  19. Lüthi, R., Meyer, E., Bammerlin, M., Baratoff, A., Lehmann, T., Howald, L., Gerber, Ch., Güntherodt, H.J.: Z. Phys. B 100, 165 (1996)

    Article  ADS  Google Scholar 

  20. Marsaudon, S., Dubourg, F., Leclère, P., Lazzaroni, R., Aimé, J.P.: Langmuir 16, 8432 (2000)

    Article  CAS  Google Scholar 

  21. Nony, L., Boisgard, R., Aimé, J.P.: J. Chem. Phys. 111, 1615 (1999)

    Article  CAS  ADS  Google Scholar 

  22. Wang, L.: Appl. Phys. Lett. 73, 3781 (1998)

    Google Scholar 

Force Measurements

  1. Bell, G.: Science 200, 618 (1978)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Bustamante, C., Marko, J.F., Siggia, E.D, Smith, S.: Science 265, 1599 (1994)

    Google Scholar 

  3. Clausen-Shaumann, H., Seitz, M., Krautbauer, R., Gaub, H.E.: Force spectroscopy with single biomolecules, Current Opinion in Chemical Biology 4, 524 (2000)

    Article  Google Scholar 

  4. Evans, E., Ritchie, K.: Biophys. J. 72, 1541 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Florin, E.-L., Moy, V.T., Gaub, H.E.: Science 264, 415 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Merkel, R, Nassoy, P., Leung, A., Ritchie, K., Evans, E.: Nature 397, 50 (1999)

    Google Scholar 

  7. Merkel, R.: Force spectroscopy on single passive biomolecules and single biomolecular bonds, Phys. Rep. 346, 343–385 (2001)

    Article  CAS  ADS  Google Scholar 

  8. Moy, V.T., Florin, E.-L., Gaub, H.E.: Science 266, 257 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Rief, M., Fernandez, J.M., Gaub, H.E.: Elastically coupled two-level systems as a model for biopolymer extensibility, Phys. Rev. Lett. 81, 4764 (1998)

    Article  CAS  ADS  Google Scholar 

  10. www.mpibpc.gwdg.de/abteilungen/071/strept.html

  11. Kratky, O., Porod, G.: Rec. Trav. Chim. 68, 1106 (1949)

    CAS  Google Scholar 

  12. Nony, L., Boisgard, R., Aimé, J.P.: J. Chem. Phys. 111, 1615 (1999)

    Article  CAS  ADS  Google Scholar 

  13. Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science 275, 1295 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H.E., Muller, D.J.: Unfolding pathways of individual bacteriorhodopsins, Science 288, 143 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Zhuang, X., Rief, M.: Single-molecule folding, Current Opinion in Structural Biology 13, 88–97 (2003)

    Google Scholar 

Biological Imaging

  1. Engel, A., Lyubchenko, Y., Müller, D.: Atomic force microscopy: A powerful tool to observe biomolecules at work, Trends Cell Biol. 9, 77–80 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Michel, D., Le Cam, E.: La microscopie de force atomique permet l’exploration du matériel génétique, Pour la Science 272, 110 (2000)

    Google Scholar 

  3. Müller, D.J., Schabert, F.A., Büldt, G., Engel, A.: Imaging purple membranes in aqueous solutions at subnanometer resolution by atomic force microscopy, Biophys. J. 68, 1681–1686 (1995)

    Article  PubMed  Google Scholar 

  4. Müller, D.J., Buldt, G., Engel, A.: Force-induced conformational change of bacteriorhodopsin, J. Mol. Biol. 249, 239–243 (1995)

    Article  PubMed  Google Scholar 

  5. Müller, D.J., Schoenenberger, C.A., Schabert, F., Engel, A.: Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: A review, J. Struct. Biol. 119, 149–157 (1997)

    Article  PubMed  Google Scholar 

  6. Müller, D.J., Fotiadis, D., Engel, A.: Mapping flexible protein domains at subnanometer resolution with the atomic force microscope, FEBS Letters 430, 105–111 (1998)

    Article  PubMed  Google Scholar 

  7. Möller, C., Allen, M., Elings, V., Engel, A., Müller, D.J.: Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces, Biophys. J. 77, 1150–1158 (1999)

    Article  PubMed  Google Scholar 

  8. Nony, L., Boisgard, R., Aimé, J.P.: Biomacromolecules 2, 827 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Pastré, D., Pietrement, O., Fusil, S., Landousy, F., Jeusset, J., David, M.O., Hamon, L., Le Cam, E., Zozime, A.: Biophys. J. 85, 2507–2518 (2003)

    Google Scholar 

  10. Rivetti, C., Guthold, M., Bustamante, C.: J. Mol. Bio. 264, 919 (1996)

    Article  CAS  Google Scholar 

  11. Viani, M.B., et al.: Nature Structural Biology 7, 644 (2000)

    Google Scholar 

Technical Aspects of Cantilever Oscillation in a Liquid Medium

  1. Fukuma, T., Kimura, M., Kobayashi, K., Matsuhige, K., Yamada, H.: Rev. Sci. Instrum. 76, 53704 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Israelachvili, J.: Intermolecular and Surface Forces, 2nd. edn., Academic Press, London (1998)

    Google Scholar 

  3. Jeffery, S., Hoffmann, P.M., Pethica, J.B., Ramanujan, C., Ozer, H.O., Oral, A.: Phys. Rev. B 70, 54114 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Maali, A., Hurth, C., Boisgard, R., Jai, C., Cohen-Bouhacina, T., Aimé, J.-P.: J. Appl. Phys. 97, 074907 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Maali, A., Cohen-Bouhacina, T., Aimé, J.P., Couturier, G.: Unpublished results (2005)

    Google Scholar 

  6. Sader, J.E.: J. Appl. Phys. 84, 64 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Tuck, E.O.: J. Eng. Math. 3, 29–44 (1969)

    Article  MATH  Google Scholar 

  8. Viani, M.B., Schäffer, T.E., Chand, A., Rief, M., Gaub, H.E., Hansma, P.K.: J. Appl. Phys. 86, 2258 (1999)

    Article  CAS  ADS  Google Scholar 

  9. Walter, D.A., Cleveland, J.P., Thompson, N.H., Hansma, P.K., Wendman, M.A., Gurley, G., Elings, V.: Rev. Sci. Instrum. 67, 3583 (1996)

    Google Scholar 

Section Four. Optical Tweezers

  1. Ashkin, A., et al.: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Gittes, F., Schmidt, C.F.: In: Methods in Cell Biology, ed. by M.P. Sheetz, Academic, New York (1998) p. 129

    Google Scholar 

  3. Capitano, M., Romano, G., Ballerini, R., Giuntini, M., Dunlap, D., Finzi, L.: Calibration of optical tweezers with differential interference contrast signals, Rev. Sci. Instrum. 73, 1687 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Bechhoefer, J., Wilson, S.: Faster, cheaper, safer optical tweezers for undergraduated laboratory, Am. J. Phys. 70, 393 (2002)

    Article  CAS  ADS  Google Scholar 

  5. Sasaki, K., et al.: Pattern formation and flow control of fine particles by laser-scanning manipulation, Opt. Lett. 16, 1463 (1991)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Visscher, K., Brakenhoff, G., Krol, J.J.: Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope, Cytometry 14, 105 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. Visscher, K., Gross, S.P., Block, S.M.: Construction of multiple-beam optical traps with nanometer-resolution, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996)

    Article  CAS  Google Scholar 

  8. Emiliani, V., et al.: Multi-force optical tweezer to generate gradients of force, Opt. Express 12, 3906 (2004)

    Article  PubMed  ADS  Google Scholar 

  9. Dufresne, E., Grieret, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Sci. Instrum. 69, 1974 (1998)

    Article  CAS  ADS  Google Scholar 

  10. Cojoc, D., et al.: Design and fabrication of diffractive optical elements for optical tweezers arrays by means of e-beam lithography, Microel. Eng. 6162, 963 (2002)

    Article  Google Scholar 

  11. Grier, D.G.: A revolution in optical manipulation, Nature 424, 810 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Curtis, J.E., Koss, B.A., Grier, D.G.: Dynamic holographic optical tweezers, Opt. Comm. 207, 169 (2002)

    Article  CAS  ADS  Google Scholar 

  13. Melville, H.G.F., Milne, G.F., et al.: Optical trapping of three dimensional structures using dynamic holograms, Opt. Express 11, 3562 (2003)

    CAS  PubMed  ADS  Google Scholar 

  14. Leach, J., Sinclair, G., Jordan, P., Courtial, J., Padgett, M.J., Cooper, J., Laczik, Z.J.: 3D manipulation of particles into crystal structures using holographic optical tweezers, Opt. Express 12, 220 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Gahagan, K.T., Swartzlander, G.A., Jr: Optical vortex trapping of particles, Opt. Lett. 21, 827 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Curtis, J.E., Koss, B.A., Grier, D.: Dynamic holographic optical tweezers, Opt. Commun. 207, 169 (2002)

    Article  CAS  ADS  Google Scholar 

  17. Rodrigo, P.J., Daria, V.R., Gluckstad, J.: Real-time interactive optical micromanipulation of a mixture of high- and low- index particles, Opt. Express 12, 1417 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. O’Neil, T., Padgett, M.J.: Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner, Opt. Comm. 185, 139 (2000)

    Article  ADS  Google Scholar 

  19. Lang, M.J., Fordyce, P.M., Engh, A.M., Neuman, K.C., Block, S.M.: Simultaneous, coincident optical trapping and single-molecule fluorescence, Nat. Meth. 22, 133 (2004)

    Article  Google Scholar 

  20. Emiliani, V., Cojoc, D., Ferrari, E., Garbin, V., Durieux, C., Coppey-Moisan, M., Di Fabrizio, E.: Wave front engineering for living cells microscopy, Opt. Express 13, 1405 (2005)

    Article  ADS  Google Scholar 

  21. Rohrbach, A., Stelzer, E.H.K.: J. Appl. Phys. 91, 5474 (2002)

    Article  CAS  ADS  Google Scholar 

  22. Sheetz, M.P. (Ed.): Methods in Cell Biology, Academic, New York (1998)

    Google Scholar 

  23. Choquet, D., Felsenfeld, D., Sheetz, M.P.: Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages, Cell 88, 39 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Galbraith, C.G., Yamada, K.M., Sheetz, M.P.: The relationship between force and focal complex development, J. of Cell Biol. 159, 695 (2002)

    Article  CAS  Google Scholar 

  25. Emiliani, V., Sanvitto, D., Coppey, M., Durieaux, C.: Submitted

    Google Scholar 

  26. Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M., Schwartz, M.A.: Integrin regulated GTPRac localized effector interaction through dissociation of Rho-GDI, Nature Cell Biol. 4, 232 (2002)

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Y., Botvinick, E.L., Zhao, Y., Berns, M.W., Usami, S., Tsien, R.Y., Chien, S.: Nature 434, 1040 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Di Fabrizio, E., Cojoc, D., Emiliani, V., Cabrini, S., Coppey-Moisan, M., Ferrari, E., Garbin, V., Altissimo, M.: Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime, Microscopy Research and Techniques 65, 252 (2004)

    Article  Google Scholar 

  29. Townes-Anderson, E. et al.: Micromanipulation of retinal neurons by optical tweezers, Molecular Vision 4, 12 (1998)

    CAS  PubMed  Google Scholar 

  30. Thoumine, O., Kocian, P., Kottelat, A., Meister, J.J.: Short term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis, Eur. Biophys. J. 29, 398 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Lenormand, G., Henon, S., Richert, A., Simeon, J., Gallet, F.: Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J. 81, 43 (2001)

    Article  CAS  PubMed  Google Scholar 

  32. Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., Kas, J.: The optical stretcher: A novel laser tool to micromanipulate cells, Biophys. J. 81, 767 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Umehara, S., Wakamoto, Y., Inoue, I., Yasuda, K.: On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells, Biochem. and Biophys. Research Com. 305, 534 (2003)

    Article  CAS  Google Scholar 

  34. Finer, J., Simmons, R.M., Spudich, J.A.: Single myosin molecule mechanics: Piconewton forces and nanometer steps, Nature 368, 113 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Svoboda, K., Block, S.: Force and velocity measured for single kinesin molecules, Cell 77, 773 (1994)

    Article  CAS  PubMed  Google Scholar 

  36. Coppin, C.M., Finer, J.T., Spudich, J.A., Vale, R.D.: Detection of sub-8-nm movements of kinesin by high-resolution optical trap microscopy, Proc. Natl. Acad. Sci. USA 93, 1913 (1996)

    Google Scholar 

Section Five. Magnetic Tweezers

  1. Kubo, R.: J. Phys. Soc. Japan 12, 570 (1957); Kubo, R.: The fluctuation–dissipation theorem, Rep. Prog. Phys. 29, 255–284 (1966)

    Google Scholar 

  2. Gelles, J., Schnapp, B., Sheetz, M.: Tracking kinesin-driven movements with nanometre-scale precision, Nature 331, 450–453 (1988)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Gosse, C., Croquette, V.: Magnetic tweezers: Micromanipulation and force measurement at the molecular level, Biophys. J. 82, 3314 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Ovryn, B.: Three-dimensional forward scattering particle image velocimetry applied to a microscopic field of view, Experiments in Fluids (Suppl.) S175–S184, Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  5. Strick, T.R., Allemand, J.-F., Bensimon, D., Bensimon, A., Croquette, V.: The elasticity of a single supercoiled DNA molecule, Science 271, 1835 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Smith, S.B., Finzi, L., Bustamante, C.: Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science 258 (5085), 1122 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Entropic elasticity of lambda-phage DNA, Science 265 (5178), 1599–1560 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Bouchiat, C., Wang, M.D., Allemand, J.-F., Strick, T.R., Block, S.M., Croquette, V.: Estimating the persistence length of a worm-like chain molecule from force–extension measurements, Biophys. J. 76, 409–413 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Strick, T.R., Allemand, J.-F., Bensimon, D., Croquette, V.: Behavior of supercoiled DNA, Biophys. J. 74, 2016 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. White, J.: Self linking and the Gauss integral in higher dimensions, Am. J. Math. 91, 693–728 (1969)

    Article  MATH  Google Scholar 

  11. Bouchiat, C., Mézard, M.: Elasticity theory of a supercoiled DNA molecules, Phys. Rev. Lett. 80, 1556–1559 (1998); Moroz, J., Nelson, P.: Torsional directed walks, entropic elasticity and DNA twist stiffness, Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1998)

    Google Scholar 

  12. Strick, T.R., Croquette, V., Bensimon, D.: Homologous pairing in stretched supercoiled DNA, Proc. Natl. Acad. Sci. USA 95, 10579 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Allemand, J.-F., Bensimon, D., Lavery, R., Croquette, V.: Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA 95, 14152 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Dessinges, M.N., Lionnet, T., Xi, X.G., Bensimon, D., Croquette, V.: Single-molecule assay reveals strand switching and enhanced processivity of UvrD, Proc. Natl. Acad. Sci. USA 101, 6439 (2004), doi:10.1073/pnas.0306713101

    Google Scholar 

  15. Charvin, G., Bensimon, D., Croquette, V.: Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases, Proc. Natl. Acad. Sci. USA 100 (17), 9820–9825 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Fulconis, R., Bancaud, A., Allemand, J.-F., Croquette, V., Dutreix, M., Viovy, J.L.: Twisting and untwisting a single DNA molecule covered by RecA protein, Biophys. J. 87 (4), 2552 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Lia, G., Bensimon, D., Croquette, V., Allemand, J.-F., Dunlap, D., Lewis, D.E.A., Adhya, S.C., Finzi, L.: Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping, Proc. Natl. Acad. Sci. USA 100, 11373 (2003), doi:10.1073/pnas.2034851100

    Google Scholar 

  18. Dessinges, M.N., Maier, B., Zhang, Y.H., Peliti, M., Bensimon, D., Croquette, V.: Stretching single stranded DNA, a model polyelectrolyte, Phys. Rev. Lett. 89, 248102 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Abels, J.A., Moreno-Herrero, F., van der Heijden, T., Dekker, C., Dekker, N.H.: Single-molecule measurements of the persistence length of double-stranded RNA, Biophys. J. 88 (4), 2737–2744 (2005). Epub Jan 14 2005

    Google Scholar 

  20. Zlatanova, J., Leuba, S.H.: Magnetic tweezers: A sensitive tool to study DNA and chromatin at the single-molecule level, Biochem. Cell Biol. 81, 151 (2003); Leuba, S.H., Karymov, M.A., Tomschik, M., Ramjit, R., Smith, P., Zlatanova, J.: Assembly of single chromatin fibers depends on the tension in the DNA molecule: Magnetic tweezers study, Proc. Natl. Acad. Sci. USA 100, 495, PNAS publications (2003)

    Google Scholar 

  21. Ali, B.M.J., Amit, R., Braslavsky, I., Oppenheim, A.B., Gileadi, O., Stavans, J.: Compaction of single DNA molecules induced by binding of integration host factor (IHF), Proc. Natl. Acad. Sci. USA 98, 10658 (2001); Skoko, D., Wong, B., Johnson, R.C., Marko, J.F.: Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes, Biochemistry 43, 13867 (2004)

    Google Scholar 

  22. Danilowicz, C., Kafri, Y., Conroy, R.S., Coljee, V.W., Weeks, J., Prentiss, M.: Measurement of the phase diagram of DNA unzipping in the temperature–force plane, Phys. Rev. Lett. 93, 078101 (2004); Danilowicz, C., Coljee, V.W., Bouzigues, C., Lubensky, D.K., Nelson, D.R., Prentiss, M.: DNA unzipped under a constant force exhibits multiple metastable intermediates, Proc. Natl. Acad. Sci. USA 100, 1694, PNAS publications (2003)

    Google Scholar 

  23. Maier, B., Bensimon, D., Croquette, V.: Replication by a single DNA polymerase of a stretched single-stranded DNA, Proc. Natl. Acad. Sci. USA 97, 12002 (2000), doi:10.1073/pnas.97.22.12002

    Google Scholar 

  24. Revyakin, A., Ebright, R.H., Strick, T.R.: Promoter unwinding and promoter clearance by RNA polymerase: Detection by single-molecule DNA nanomanipulation, Proc. Natl. Acad. Sci. USA 101, 4776, PNAS publications (2004)

    Google Scholar 

  25. Koster, D.A., Croquette, V., Dekker, C., Shuman, S., Dekker, N.H.: Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB, Nature 434 (7033), 671–674 (2005); Dekker, N.H., Rybenkov, V.V., Duguet, M., Crisona, N.J., Cozzarelli, N.R., Bensimon, D., Croquette, V.: The mechanism of type IA topoisomerases, Proc. Natl. Acad. Sci. USA 99, 12126 (2002), doi:10.1073/pnas.132378799

    Google Scholar 

  26. Strick, T.R., Croquette, V., Bensimon, D.: Single-molecule analysis of DNA uncoiling by a type II topoisomerase, Nature 404, 901 (2000), doi:10.1038/35009144; Crisona, N.J., Strick, T.R., Bensimon, D., Croquette, V., Cozzarelli, N.R.: Preferential relaxation of positively supercoiled DNA by E-coli topoisomerase IV in single-molecule and ensemble measurements, Genes Dev. 14, 2881 (2000)

    Google Scholar 

  27. Dawid, A., Croquette, V., Grigoriev, M., Heslot, F.: Single-molecule study of RuvAB-mediated Holliday-junction migration, Proc. Natl. Acad. Sci. USA 101, 11611 (2004), doi:10.1073/pnas.0404369101; Amit, R., Gileadi, O., Stavans, J.: Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions, Proc. Natl. Acad. Sci. USA 101, 11605, PNAS publications (2004)

    Google Scholar 

  28. Strick, T.R., Kawaguchi, T., Hirano, T.: Real-time detection of single-molecule DNA compaction by condensin I, Curr. Biol. 14, 874 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Seidel, R., Van Noort, J., Van Der Scheer, C., Bloom, J.G.P., Dekker, N.H., Dutta, C.F., Blundell, A., Robinson, T., Firman, K., Dekker, C.: Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I, Nat. Struct. Mol. Biol. 11, 838 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Saleh, O.A., Perals, C., Barre, F.X., Allemand, J.-F.: Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment, EMBO J. 23, 2430 (2004); Saleh, O.A., Bigot, S., Barre, F.X., Allemand, J.-F.: Analysis of DNA supercoil induction by FtsK indicates translocation without groove-tracking, Nat. Struct. Mol. Biol. 12 (5), 436–440 (2005)

    Google Scholar 

  31. Matthews, B.D., LaVan, D.A., Overby, D.R., Karavitis, J., Ingber, D.E.: Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells, Appl. Phys. Lett. 85 (14), 2968–2970 (2004); Amblard, F., Yurke, B., Pargellis, A., Leibler, S.: A magnetic manipulator for studying local rheology and micromechanical properties of biological systems, Rev. Sci. Instrum. 67, 1–10 (1996); Hosu, B.G., Jakab, K., Banki, P., Toth, F.I., Forgacs, G.: Magnetic tweezers for intracellular applications, Rev. Sci. Instrum. 74, 4158 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Le Grimellec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Grimellec, C. et al. (2009). Nanoforce and Imaging. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_8

Download citation

Publish with us

Policies and ethics