Skip to main content

Aptamer Selection by Darwinian Evolution

  • Chapter
  • First Online:
Nanoscience
  • 1840 Accesses

Abstract

Any technical object is defined by a structure and certain related properties, together with a function and a way of making it. A biological object is thus a biochemical structure, either organic or organically based, which possesses one or more biological properties (recognition, structure, transformation, etc.), which carries out a specific function, and which is produced by a biological process. A biological nano-object is a biological object with nanometric dimensions, from which we understand that it is a macromolecule or an assembly of such (diameter of a hemoglobin molecule 5.5 nm). By learning to understand and manipulate the enzymes that produce these macromolecules, biotechnology can today create or sculpt biological nanoobjects using fabrication processes that closely resemble natural mechanisms of synthesis, but which do not require the presence of a living being. Although these activities are recent and still somewhat limited, our mastery of the living tool box has already produced some entities with industrial prospects, including some artificial nano-objects with quite remarkable properties, unknown in nature. Among the biological macromolecules, the nucleic acids play a central role beecause they define both the species and the individual and provide the chemical support for heredity. They are also the only biological molecules we are able to reproduce identically by a simple and well understood enzyme mechanism, viz., the polymerase chain reaction (PCR) (see Chap. 15), which lends itself particularly well to mass production. The nucleic acids feature amongst the most widely used compounds in biology at the current time, e.g., as probes, amplification initiator, etc., as attested by the present market for oligonucleotides (short sequences of nucleic acids): 340 million dollars in 2003, with a predicted 776 million dollars in 2010. However, the use of nucleic acids is generally based on the canonical Watson–Crick pairing of nuclear bases, whose sequence encodes genetic information, while their wealth of structural potential remains virtually unexploited. In contrast, natural evolution has selected many RNA for their catalytic activities or for their ability to interact with proteins or other classes of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dobzhansky, T.: Nothing in biology makes sense except in the light of evolution, The American Biology Teacher 35, 125–129 (1973)

    Google Scholar 

  2. Darwin, C.: The Origin of Species, Penguin, London (1968)

    Google Scholar 

  3. Luchetta, P., Maurel, M.-C., Higuet, D., Vervoort, M.: Evolution moléculaire: Cours et questions de révisions, Dunod, Collection Sciences Sup (2005)

    Google Scholar 

  4. Mayr, E.: The Growth of Biological Thought, Harvard University Press, MA (1982)

    Google Scholar 

  5. Hermann, T., Patel, D.J.: Stitching together RNA tertiary architectures, J. Mol. Biol. 294, 829–849 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Szewczak, A.A., et al.: RNA tertiary structure mediation by adenosine platforms [see comments], Science 273, 1696–1699 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Laspia, M.F., Rice, A.P., Mathews, M.B.: HIV-I Tat protein increases transcriptional initiation and stabilizes elongation, Cell 59, 283–292 (1989)

    Article  CAS  PubMed  Google Scholar 

  8. Hermann, T., Patel, D.J.: Adaptive recognition by nucleic acid aptamers, Science 287, 820–825 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ghosh, G., Huang, D.B., Huxford, T.: Molecular mimicry of the NF-κB DNA target site by a selected RNA aptamer, Curr. Opin. Struct. Biol. 14, 21–27 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Oliphant, A.R., Struhl, K.: The use of random-sequence oligonucleotides for determining consensus sequences, Methods Enzymol. 155, 568–582 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. Oliphant, A.R., Brandl, C.J., Struhl, K.: Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: Analysis of yeast GCN4 protein, Mol. Cell. Biol. 9, 2944–2949 (1989)

    CAS  PubMed  Google Scholar 

  12. Kinzler, K.W., Vogelstein, B.: Whole genome PCR: Application to the identification of sequences bound by gene regulatory proteins, Nucleic Acids Res. 17, 3645–3653 (1989)

    Article  CAS  PubMed  Google Scholar 

  13. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818–822 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Robertson, D.L., Joyce, G.F.: Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature 344, 467–468 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249, 505–510 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Green, R., Ellington, A.D., Szostak, J.W.: In vitro genetic analysis of the tetrahymena self-splicing intron, Nature 347, 406–408 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Thiesen, H.J., Bach, C.: Target Detection Assay (TDA): A versatile procedure to determine DNA binding sites as demonstrated on SP1 protein, Nucleic Acids Res. 18, 3203–3209 (1990)

    Article  CAS  PubMed  Google Scholar 

  18. Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N., Weintraub, H.: Sequence-specific DNA binding by the c-Myc protein, Science 250, 1149–1151 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Blackwell, T.K., Weintraub, H.: Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection, Science 250, 1104–1110 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Pollock, R., Treisman, R.: A sensitive method for the determination of protein–DNA binding specificities, Nucleic Acids Res. 18, 6197–6204 (1990)

    Article  CAS  PubMed  Google Scholar 

  21. Joyce, G.F.: Directed molecular evolution, Sci. Am. 267 (6), 48–55 (1992)

    Article  Google Scholar 

  22. Osborne, S.E., Matsumura, I., Ellington, A.D.: Aptamers as therapeutic and diagnostic reagents: Problems and prospects, Curr. Opin. Chem. Biol. 1, 5–9 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Gold, L., Polisky, B., Uhlenbeck, O., Yarus, M.: Diversity of oligonucleotide functions, Annu. Rev. Biochem. 64, 763–797 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. Fitzwater, T., Polisky, B.: A SELEX primer, Methods Enzymol. 267, 275–301 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. Cox, J.C., Rudolph, P., Ellington, A.D.: Automated RNA selection, Biotechnol. Prog. 14, 845–850 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Brody, E.N., Gold, L.: Aptamers as therapeutic and diagnostic agents, J. Biotechnol. 74, 5–13 (2000)

    CAS  PubMed  Google Scholar 

  27. Burmeister, P.E., Lewis, S.D., Silva, R.F., Preiss, J.R., Horwitz, L.R., Pendergrast, P.S., et al.: Direct in vitro selection of a 2-O-methyl aptamer to VEGF, Chem. Biol. 12, 25–33 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Green, L.S., Kirschenheuter, G.P., Charlton, J., Guidot, D.M., Repine, J.M.: Nuclease resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor, Chem. Biol. 2, 683–695 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Pagratis, N., Bell, C., Chang, Y., Jennings, S., Fitzwater, T., Jellinek, D., et al.: Potent 2-amino-, and 2-fluoro-2-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor, Nature Biotech. 15, 68–73 (1997)

    Article  CAS  Google Scholar 

  30. Micklefield, J.: Backbone modification of nucleic acids: Synthesis, structure and therapeutic applications, Curr. Med. Chem. 8, 1157–1179 (2001)

    CAS  PubMed  Google Scholar 

  31. Latham, J.A., Johnson, R., Toole, J.J.: The application of a modified nucleotide in aptamer selection: A novel thrombin aptamer containing 5-(1-pentynyl)-2-deoxyurudine, Nucleic Acid Res. 22, 2817–2822 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Vater, A., Klussmann, S.: Toward third-generation aptamers: Spiegelmers and their therapeutic prospects, Curr. Opin. Drug Discov. Devel. 6, 253–261 (2003)

    CAS  PubMed  Google Scholar 

  33. Kumar, P.K.R., Ellington, A.D.: Artificial evolution and natural ribozymes, FASEB J. 9, 1183–1195 (1995)

    CAS  PubMed  Google Scholar 

  34. Lehman, N., Joyce, G.F.: Evolution in vitro of an RNA enzyme with altered metal dependence, Nature 361, 182–185 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Tsang, J., Joyce, G.F.: Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution, J. Mol. Biol. 262, 31–42 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. Bartel, D.P., Szostak, J.W.: Isolation of new ribozymes from a large pool of random sequences, Science 261, 1411–1418 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Ekland, E.H., Bartel, D.P.: RNA-catalysed RNA polymerization using nucleoside triphosphates, Nature 383, 192 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Deng, Q., German, I., Buchanan, D., Kennedy, R.T.: Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Anal. Chem. 73, 5415–5421 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Romig, T.S., Bell, C., Drolet, D.W.: Aptamer affinity chromatography: Combinatorial chemistry applied to protein purification, J. Chromatogr. B Biomed. Sci. Appl. 731, 275–284 (1999)

    Article  CAS  PubMed  Google Scholar 

  40. Michaud, M., Jourdan, E., Villet, A., Ravel, A., Grosset, C., Peyrin, E.: A DNA aptamer as a new target-specific chiral selector for HPLC, J. Am. Chem. Soc. 125, 8672–8679 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Dick, L.W., Jr., McGown, L.B.: Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry, Anal. Chem. 76, 3037–3041 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. Blank, M., Weinschenk, T., Priemer, M., Schluesener, H.: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels: Selective targeting of endothelial regulatory protein pigpen, J. Biol. Chem. 276, 16464–16468 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Daniels, D.A., Chen, H., Hicke, B.J., Swiderek, K.M., Gold, L.: A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment, Proc. Natl. Acad. Sci. USA 100, 15416–15421 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gustafsdottir, S.M., et al.: Protein detection using proximity-dependent DNA ligation assays, Nat. Biotechnol. 20, 473–477 (2002)

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X.L., Li, F., Su, Y.H., Sun, X., Li, X.B., Schluesener, H.J., et al.: Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay, Anal. Chem. 76, 5605–5610 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Jhaveri, S., Rajendran, M., Ellington, A.D.: In vitro selection of signaling aptamers, Nat. Biotechnol. 18, 1293–1297 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. Hamaguchi, N., Ellington, A., Stanton, M.: Aptamer beacons for the direct detection of proteins, Anal. Biochem. 294, 126–131 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. Petach, H., Gold, L.: Dimensionality is the issue: Use of photoaptamers in protein microarrays, Curr. Opin. Biotechnol. 13, 309–314 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. Smith, D., Collins, B.D., Heil, J., Koch, T.H.: Sensitivity and specificity of photoaptamer probes, Mol. Cell. Proteomics 2, 11–18 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. Charlton, J., Sennello, J., Smith, D.: In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase, Chem. Biol. 4, 809–816 (1997)

    Article  CAS  PubMed  Google Scholar 

  51. Tavitian, B.: In vivo imaging with oligonucleotides for diagnosis and drug development, Gut 52, Suppl. 4, 40–47 (2003)

    Google Scholar 

  52. Werstuck, G., Green, M.R.: Controlling gene expression in living cells through small molecule–RNA interactions, Science 282, 296-298 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Good, P.D., Krikos, A.J., Li, S.X., Bertrand, E., Lee, N.S., Giver, L., et al.: Expression of small, therapeutic RNAs in human cell nuclei, Gene. Ther. 4, 45–54 (1997)

    Article  CAS  PubMed  Google Scholar 

  54. Thomas, M., Chedin, S., Carles, C., Riva, M., Famulok, M., Sentenac, A.: Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers, J. Biol. Chem. 272, 27980–27986 (1997)

    Article  CAS  PubMed  Google Scholar 

  55. Shi, H., Hoffman, B.E., Lis, J.T.: RNA aptamers as effective protein antagonists in a multicellular organism, Proc. Natl. Acad. Sci. USA 96, 10033–10038 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Vuyisich, M., Beal, P.A.: Controlling protein activity with ligand-regulated RNA aptamers, Chem. Biol. 9, 907–913 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. Cerchia, L., Ducongé, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., et al.: Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase, PLoS Biol. 3, 123 (2005)

    Article  CAS  Google Scholar 

  58. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355, 564–566 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Kelly, J.A., Feigon, J., Yeates, T.O.: Reconciliation of the X-ray NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG), J. of Biochemistry 256, 417–422 (1996)

    CAS  Google Scholar 

  60. Griffin, L.C., Tidmarsh, G.F., Bock, L.C., Toole, J.J., Leung, L.L.: In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits, Blood 81, 3271–3276 (1993)

    CAS  PubMed  Google Scholar 

  61. Rusconi, C.P., Scardino, E., Layzer, J., Pitoc, G.A., Ortel, T.L., Monroe, D., et al.: RNA aptamers as reversible antagonists of coagulation factor IXa, Nature 419, 90–94 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Rusconi, C.P., Roberts, J.D., Pitoc, G.A., Nimjee, S.M., White, R.R., Quick, G., Jr., et al.: Antidote-mediated control of an anticoagulant aptamer in vivo, Nat. Biotechnol. 22, 1423–1428 (2004)

    Article  CAS  PubMed  Google Scholar 

  63. Hicke, B.J., Stephens, A.W.: Escort aptamers: A delivery service for diagnosis and therapy, J. Clin. Invest. 106, 923–928 (2000)

    Article  CAS  PubMed  Google Scholar 

  64. Lin, Y., Qiu, Q., Gill, S.C., Jayasena, S.D.: Modified RNA sequence pools for in vitro selection, Nucleic Acids Res. 22, 5229–5234 (1994)

    Article  CAS  PubMed  Google Scholar 

  65. Lin, Y., Padmapriya, A., Morden, K.M., Jayasena, S.D.: Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition, Proc. Natl. Acad. Sci. USA 92, 11044–11048 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Pestourie, C., Tavitian, B., Ducongé, F.: Aptamers against extracellular targets for in vivo applications, Biochimie 87, 921–930 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. www.macugen.com

  68. Jenison, R.D., Gill, S.C., Pardi, A., Polisky, B.: High-resolution molecular discrimination by RNA, Science 263, 1425–1429 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Cerchia, L., Hamm, J., Libri, D., Tavitian, B., de Franciscis, V.: Nucleic acid aptamers in cancer medicine, FEBS Lett. 528, 12–16 (2002)

    Article  CAS  PubMed  Google Scholar 

  70. Bittker, J.A., Le, B.V., Liu, D.R.: Nucleic acid evolution and minimization by nonhomologous random recombination, Nat. Biotechnol. 20, 1024–1029 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chauveau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chauveau, F., Pestourie, C., Ducongé, F., Tavitian, B. (2009). Aptamer Selection by Darwinian Evolution. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_6

Download citation

Publish with us

Policies and ethics