Skip to main content
Book cover

Nanoscience pp 803–838Cite as

Molecular Dynamics. Observing Matter in Motion

  • Chapter
  • First Online:
  • 1796 Accesses

Abstract

It is particularly important to obtain insights into the structural and dynamical aspects of ordered systems on the atomic level in order to understand the functions of such complex molecular constructions. In many cases, it is impossible to obtain microscopic detail using conventional experimental techniques. However, the genuine explosion of computer resources over the past ten years, together with the development of more effective algorithms, have made it possible to study nanomolecular assemblies of increasing complexity through the methods of theoretical chemistry. The purpose of this chapter is to examine one aspect of theoretical chemistry, namely, statistical simulations of molecular mechanics. The aim of such simulations is to gain access to the atomic detail of condensed matter through computer experiments. There are many techniques available today to do this,including molecular dynamics, stochastic dynamics and its special cases – e.g., Brownian dynamics or Langevin dynamics – or again Monte Carlo simulations. These different theoretical approaches can be viewed in many ways as a bridge between macroscopic experimental observation and its microscopic counterpart. In the following, we shall be mainly concerned with molecular dynamics [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frenkel, D., Smit, B.: Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, San Diego (1996)

    MATH  Google Scholar 

  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  3. Ewald, P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. 64, 253–287 (1921)

    Article  Google Scholar 

  4. Ladd, A.J.C.: Long-range dipolar interactions in computer simulations of polar liquids, Mol. Phys. 36, 463–474 (1978)

    Article  CAS  ADS  Google Scholar 

  5. van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry, Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)

    Article  Google Scholar 

  6. Sanbonmatsu, K.Y., Simpson, J., Tung, C.S.: Simulating movement of tRNA into the ribosome during decoding, Proc. Natl. Acad. Sci. USA 102, 15854–15859 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Duan, Y., Kollman, P.A.: Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282, 740–744 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: Techniques and applications, J. Phys. Chem. B 104, 159–178 (2000)

    Article  CAS  Google Scholar 

  9. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, Cambridge University Press (2005)

    Google Scholar 

  10. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. In: Springer Series in Computational Mathematics, Vol. 31, 2nd edn. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  11. Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L.: Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87, 1117–1128 (1996)

    Article  CAS  ADS  Google Scholar 

  12. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.C., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

  13. Kollman, P., Dixon, R., Cornell, W., Fox, T., Chipot, C., Pohorille, A.: The development/application of a ‘minimalist’ force field using a combination of ab initio and experimental data. In: Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, ed. by W.F. Van Gunsteren, P.K. Weiner, Escom, The Netherlands (1997) pp. 83–96

    Google Scholar 

  14. Ryckaert, J., Bellemans, A.: Molecular dynamics of liquid alkanes, Chem. Soc. Faraday Discuss. 66, 95–106 (1978)

    Article  Google Scholar 

  15. Chipot, C., Ángyán, J.G.: Continuing challenges in the parametrization of intermolecular force fields. Towards an accurate description of electrostatic and induction terms, New J. Chem. 29, 411–420 (2005)

    Google Scholar 

  16. Wang, W., Skeel, R.D.: Fast evaluation of polarizable forces, J. Chem. Phys. 123, 164107 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Gay, J.G., Berne, B.J.: Modification of the overlap potential to mimic a linear site–site potential, J. Chem. Phys. 74, 3316–3319 (1981)

    Article  CAS  ADS  Google Scholar 

  18. Shelley, J.C., Shelley, M.Y., Reeder, R.C., Bandyopadhyay, S., Klein, M.L.: A coarse grain model for phospholipid simulations, J. Phys. Chem. B. 105, 4464–4470 (2001)

    Article  CAS  Google Scholar 

  19. Nielsen, S.O., Lopez, C.F., Srinivas, G., Klein, M.L.: Coarse grain models and the computer simulation of soft materials, J. Phys.: Condens. Matter 16, R481–R512 (2004)

    Article  CAS  ADS  Google Scholar 

  20. Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159, 98–103 (1967)

    Article  CAS  ADS  Google Scholar 

  21. Martyna, G.J., Klein, M.L., Tuckerman, M.E.: Nosé–Hoover chains: The canonical distribution via continuous dynamics, J. Chem. Phys. 97, 2635–2645 (1992)

    Article  ADS  Google Scholar 

  22. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, 255–268 (1984)

    Article  ADS  Google Scholar 

  23. Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695–1697 (1985)

    Article  PubMed  ADS  Google Scholar 

  24. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  ADS  Google Scholar 

  25. McQuarrie, D.A.: Statistical Mechanics, Harper and Row, New York (1976)

    Google Scholar 

  26. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72, 2384–2393 (1980)

    Article  CAS  ADS  Google Scholar 

  27. Feller, S.E., Zhang, Y.H., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulations – The Langevin piston method, J. Chem. Phys. 103, 4613–4621 (1995)

    Article  CAS  ADS  Google Scholar 

  28. Barker, J.A.: Reaction field, screening, and long-range interactions in simulations of ionic and dipolar systems, Mol. Phys. 83, 1057–1064 (1994)

    Article  CAS  ADS  Google Scholar 

  29. Toukmaji, A.Y., Board Jr., J.A.: Ewald summation techniques in perspective: A survey, Comput. Phys. Comm. 95, 73–92 (1996)

    Article  MATH  CAS  ADS  Google Scholar 

  30. Rozanska, X., Chipot, C.: Modeling ion–ion interaction in proteins: A molecular dynamics free energy calculation of the guanidinium–acetate association, J. Chem. Phys. 112, 9691–9694 (2000)

    Article  CAS  ADS  Google Scholar 

  31. Perram, J.W., Petersen, H.G., de Leeuw, S.W.: An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles, Mol. Phys. 65, 875–889 (1988)

    Article  CAS  ADS  Google Scholar 

  32. Fincham, D.: Optimisation of the Ewald sum for large systems, Mol. Sim. 13, 1–9 (1994)

    Article  CAS  Google Scholar 

  33. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  34. Darden, T.A., York, D.M., Pedersen, L.G.: Particle mesh Ewald: An NlogN method for Ewald sums in large systems, J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  ADS  Google Scholar 

  35. Essman, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method, J. Chem. Phys. 103, 8577–8593 (1995)

    Article  ADS  Google Scholar 

  36. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles, IOP Publishing, Bristol, England (1988)

    Book  MATH  Google Scholar 

  37. Chandler, D.: Introduction to Modern Statistical Mechanics, Oxford University Press (1987)

    Google Scholar 

  38. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  ADS  Google Scholar 

  39. Neumann, M., Steinhauser, O.: The influence of boundary conditions used in machine simulations on the structure of polar systems, Mol. Phys. 39, 437–454 (1980)

    Article  CAS  ADS  Google Scholar 

  40. Kirkwood, J.G.: Statistical mechanics of fluid mixtures, J. Chem. Phys. 3, 300–313 (1935)

    Article  CAS  ADS  Google Scholar 

  41. Zwanzig, R.W.: High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22, 1420–1426 (1954)

    Google Scholar 

  42. Bennett, C.H.: Efficient estimation of free energy differences from Monte Carlo data, J. Comp. Phys. 22, 245–268 (1976)

    Article  ADS  Google Scholar 

  43. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free energy estimation: Umbrella sampling, J. Comput. Phys. 23, 187–199 (1977)

    Article  ADS  Google Scholar 

  44. Hénin, J., Chipot, C.: Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. 121, 2904–2914 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Ben-Naim, A., Marcus, Y.: Solvation thermodynamics of nonionic solutes, J. Chem. Phys. 81, 2016–2027 (1984)

    Article  CAS  ADS  Google Scholar 

  46. Darve, E., Pohorille, A.: Calculating free energies using average force, J. Chem. Phys. 115, 9169–9183 (2001)

    Article  CAS  ADS  Google Scholar 

  47. Chipot, C.: Calculating free energy differences from perturbation theory. In: Free Energy Calculations. Theory and Applications in Chemistry and Biology, ed. by C. Chipot, A. Pohorille, Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  48. Couturier, R., Chipot, C.: Parallel molecular dynamics using OpenMP on a shared memory machine, Comp. Phys. Comm. 124, 49–59 (2000)

    Article  MATH  CAS  ADS  Google Scholar 

  49. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, L., Schulten, K.: Scalable molecular dynamics with Namd, J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. Tajkhorshid, E., Nollert, P., Jensen, M.Ø., Miercke, L.J.W., O’Connell, J., Stroud, R.M., Schulten, K.: Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296, 525–530 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  51. van Gunsteren, W.F., Mark, A.E.: Validation of molecular dynamics simulation, J. Chem. Phys. 108, 6109–6116 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues François Dehez, Jérôme Delhommelle, and Mounir Tarek for accepting to check and comment on the text, with suggestions for improving the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chipot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chipot, C. (2009). Molecular Dynamics. Observing Matter in Motion. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_14

Download citation

Publish with us

Policies and ethics