Skip to main content
Book cover

Nanoscience pp 595–638Cite as

Mass Spectrometry

  • Chapter
  • First Online:
  • 1846 Accesses

Abstract

For twenty years or so now, mass spectrometry has been used to get exact measurements of the mass of biological molecules such as proteins, nucleic acids,oligosaccharides, and so on. Over the past ten years, this technology has followed the trend toward miniaturisation and the samples required can be much smaller. In particular, the nanoelectrospray source (online or by needle) allow one to work at flow rates of a few tens of nanolitres/min. There are many applications, both in the field of proteomics and in the analysis of protein structure, dynamics, and interactions. Combining this source with nanoHPLC, complex mixtures only available in small quantities can be separated and analysed online. There are also some advantages over conventional HPLC, despite a set of constraints related to the small dimensions and low flow rates. Combining capillary electrophoresis with the electrospray source also gives useful results, with its own set of advantages and constraints. Finally, developments are currently underway to combine this source with chips, providing a means of separation and analysis online.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hsieh, S., Dreisewerd, K., van der Schors, R.C., Jimenez, C.R., Stahl-Zeng, J., Hillenkamp, F., Jorgenson, J.W., Geraerts, W.P., Li, K.W.: Separation and identification of peptides in single neurons by microcolumn liquid chromatography–matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis, Anal. Chem. 70 (9), 1847–1852 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Redeker, V., Toullec, J.Y., Vinh, J., Rossier, J., Soyez, D.: Combination of peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunodetection on single glands or cells, Anal. Chem. 70 (9) 1805–1811 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. Barber, M.: Biochem. Biophys. Res. Commun. 18, 469–473 (1965)

    Article  CAS  Google Scholar 

  4. Torgerson, D.F., Skowronski, R.P., Macfarlane, R.D.: New approach to the mass spectrometry of non-volatile compounds, Biochem. Biophys. Res. Commun. 60, 616–621 (1974)

    Article  CAS  PubMed  Google Scholar 

  5. Macfarlane, R.D., Torgerson, D.F.: Californium-252 plasma desorption mass spectrometry, Science 191, 920–925 (1976)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Hålekausson, P., Kamenski, I., Sundquist, B., Fohlman, J., Perterson P., McNeal, C.J., Macfarlane, R.D.: 127-I plasma desorption mass spectrometry of insulin, J. Am. Chem. Soc. 104, 2948–2949 (1982)

    Article  Google Scholar 

  7. Benninghoven, A., Jaspers, D., Sichtermann, W.: Secondary-ion emission of amino acids, Appl. Phys. 11, 35–39 (1976)

    Article  CAS  ADS  Google Scholar 

  8. Barber, M.: Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry, J. Chem. Soc. Chem. Comm. 1981, 325–327 (1981)

    Article  MathSciNet  Google Scholar 

  9. Barber, M., Bordoli, R.S., Elliot, G.J., Sedgwick, R.D., Tyler, A.N., Green, B.N.: Fast atom bombardment mass spectrometry of bovine insulin and other large peptides, J. Chem. Soc. Chem. Comm. 1982, 936–938 (1982)

    Article  Google Scholar 

  10. Dell, A., Morris, H.R.: Fast atom bombardment–high field magnetic mass spectrometry of 6000 Da polypeptides, Biochem. Biophys. Res. Commun. 106, 1456–1461 (1982)

    Article  CAS  PubMed  Google Scholar 

  11. Chait, B.T., Kent, S.B.: Weighing naked proteins: Practical, high-accuracy mass measurement of peptides and proteins, Science 257 (5078), 1885–1894 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Roepstorff, P.: Mass spectrometry in the analysis of peptides and proteins, past and present. In: Protein and Peptide Analysis by Mass Spectrometry, ed. by J.R. Chapman, Humana Press, Totowa, NJ (1996) pp. 1–7

    Google Scholar 

  13. Cole, R.B.: Some tenets pertaining to electrospray ionization mass spectrometry, J. Mass Spectrom. 35 (7), 763–772 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals, Mass Spectrom. Rev. 20 (6), 362–387 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers, Anal. Chem. 57, 675 (1985)

    Article  CAS  PubMed  Google Scholar 

  16. Gaskell, S.J.: Electrospray: Principles and practices, J. Mass Spectrom. 32, 677–688 (1997)

    Article  CAS  Google Scholar 

  17. Gallagher, R.T., Chapman, J.R., Mann, M.: Design and performance of an electrospray ion source for a doubly-focusing magnetic sector mass spectrometer, Rapid Commun. Mass Spectrom. 4, 369–372 (1990)

    Article  CAS  Google Scholar 

  18. Chapman, J.R., Gallagher, R.T., Barton, E.C., Curtis, J.M., Derrick, P.J.: Advantages of high-resolution and high-mass range magnetic-sector mass spectrometry for electrospray ionization, Org. Mass Spectrom. 27, 195–203 (1992)

    Article  CAS  Google Scholar 

  19. Niessen, W.M.: Advances in instrumentation in liquid chromatography–mass spectrometry and related liquid-introduction techniques, J. Chromatogr. A 794 (1–2), 407–435 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Arnott, D., Henzel, W.J., Stults, J.T.: Rapid identification of comigrating gel-isolated proteins by ion trap mass spectrometry, Electrophoresis 19 (6), 968–980 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Qin, J., Herring, C.J., Zhang, X.: De novo peptide sequencing in an ion trap mass spectrometer with 18O labeling, Rapid Commun. Mass Spectrom. 12 (5), 209–216 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. McLuckey, S.A., Van Berkel, G.J., Goeringer, D.E., Glish, G.L.: Ion trap mass spectrometry. Using high-pressure ionization, Anal. Chem. 66 (14), 737A–743A (1994)

    Google Scholar 

  23. Henion, J., Wachs, T., Mordehai, A.: Recent developments in electrospray mass spectrometry including implementation on an ion trap, J. Pharm. Biomed. Anal. 11 (11–12), 1049–1061 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Amster, I.J.: Fourier transform mass spectrometry, J. Mass Spectrom. 31, 1325–1337 (1996)

    Article  CAS  Google Scholar 

  25. Bruce, J.E., Smith, V.F., Liu, C., Randall, L.L., Smith, R.D.: The observation of chaperone–ligand noncovalent complexes with electrospray ionization mass spectrometry, Protein Sci. 7 (5), 1180–1185 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Cassady, C.J., Carr, S.R.: Elucidation of isomeric structures for ubiquitin [M + 12H]12 +  ions produced by electrospray ionization mass spectrometry, J. Mass Spectrom. 31 (3), 247–254 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. McLafferty, F.W., Senko, M.W., Little, D.P., Wood, T.D., O’Connor, P.B., Speir, J.P., Chorush, R.A., Kelleher, N.L.: Electrospray ionization and Fourier-transform mass spectrometry in biomedical research. In: Proceedings of the 13th International MS Conference, Budapest, Hungary, John Wiley (1994)

    Google Scholar 

  28. Solouki, T., Reinhold, B.B., Costello, C.E., O’Malley, M., Guan, S., Marshall, A.G.: Electrospray ionization and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of permethylated oligosaccharides, Anal. Chem. 70 (5), 857–864 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Tolic, L.P., Bruce, J.E., Lei, Q.P., Anderson, G.A., Smith, R.D.: In-trap cleanup of proteins from electrospray ionization using soft sustained off-resonance irradiation with Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 70 (2), 405–408 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Yang, L., Lee, C.S., Hofstadler, S.A., Pasa-Tolic, L., Smith, R.D.: Capillary isoelectric focusing electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for protein characterization, Anal. Chem. 70, 3235–3241 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. Verentchikov, A.N., Standing, K.G.: Reflecting time-of-flight mass spectrometry with an electrospray ion source and orthogonal extraction, Anal. Chem. 66, 126–133 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Mirgorodskaya, O.A., Shevchenko, A.A., Chernushevich, I.V., Dodonov, A.F., Miroschikov, A.I.: Electrospray ionization time-of-flight mass spectrometry in protein chemistry, Anal. Chem. 66, 99–107 (1994)

    Article  CAS  Google Scholar 

  33. Burdick, D.J., Stults, J.T.: Analysis of peptide synthesis products by electrospray ionization mass spectrometry, Methods Enzymol. 289, 499–519 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Figeys, D., Lock, C., Taylor, L., Aebersold, R.: Microfabricated device coupled with an electrospray ionization quadrupole time-of-flight mass spectrometer: Protein identifications based on enhanced-resolution mass spectrometry and tandem mass spectrometry data, Rapid Commun. Mass Spectrom. 12 (20), 1435–1444 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Olling, A., Breimer, M.E., Peltomaa, E., Samuelsson, B.E., Ghardashkhani, S.: Electrospray ionization and collision-induced dissociation time-of-flight mass spectrometry of neutral glycosphingolipids, Rapid Commun. Mass Spectrom. 12 (10), 637–645 (1998)

    Article  CAS  PubMed  Google Scholar 

  36. Shevchenko, A., Chernushevich, I., Ens, W., Standing, K.G., Thomson, B., Wilm, M., Mann, M.: Rapid de novo peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer, Rapid Commun. Mass Spectrom. 11 (9), 1015–1024 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Morris, H.R., Paxton, T., Dell, A., Langhorne, J., Berg, M., Borboli, R.S., Hoyes, J., Bateman, R.H.: High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer, Rapid Commun. Mass Spectrom. 10, 889–896 (1996)

    Article  CAS  PubMed  Google Scholar 

  38. Smith, R.D., Light-Wahl, K.J., Winger, B.E., Goodlett, D.R.: Electrospray ionization. In: Biological Mass Spectrometry: Present and Future, ed. by T. Matsuo et al., John Wiley and Sons, Baffinslane, Chichester UK (1995) pp. 41–74

    Google Scholar 

  39. Emmett, M.R., Caprioli, R.M.: Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins, J. Am. Soc. Mass Spectrom. 5, 605–613 (1994)

    Article  CAS  Google Scholar 

  40. Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source, Anal. Chem. 68 (1), 1–8 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. Wilm, M.S., Mann, M.: Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last?, Int. J. Mass Spectrom. Ion Processes 136, 167–180 (1994)

    Article  CAS  Google Scholar 

  42. Valaskovic, G.A., Kelleher, N.L., Little, D.P., Aaserud, D.J., McLafferty, F.W.: Attomole-sensitivity electrospray source for large-molecule mass spectrometry, Anal. Chem. 67 (20), 3802–3805 (1995)

    Article  CAS  PubMed  Google Scholar 

  43. Smith, R.D., Walh, J.H., Goodlett, D.R., Hofstadler, S.A.: Anal. Chem. 65, 574A–584A (1993)

    CAS  Google Scholar 

  44. Wahl, J.H., Goodlett, D.R., Udseth, H.R., Smith, R.D.: Anal. Chem. 64, 3194–3196 (1992)

    CAS  Google Scholar 

  45. Andren, P.E., Emmett, M.R., DaGue, B.B., Steulet, A.F., Waldmeier, P., Caprioli, R.M.: Blood–brain barrier penetration of 3-aminopropyl-n-butylphosphinic acid (CGP 36742) in rat brain by microdialysis/mass spectrometry, J. Mass Spectrom. 33 (3), 281–287 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T., Mann, M.: Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry, Nature 379 (6564), 466–469 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Valaskovic, G.A., Kelleher, N.L., McLafferty, F.W.: Attomole protein characterization by capillary electrophoresis mass spectrometry, Science 273 (5279), 1199–1202 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Davis, M.T., Stahl, D.C., Hefta, S.A., Lee, T.D.: A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures, Anal. Chem. 67 (24), 4549–4556 (1995)

    Article  CAS  PubMed  Google Scholar 

  49. Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass spectrometry: Electrospray ionization, Anal. Chem. 62 (9), 882–899 (1990)

    Article  CAS  PubMed  Google Scholar 

  50. Juraschek, R., Dulcks, T., Karas, M.: Nanoelectrospray: More than just a minimized-flow electrospray ionization source, J. Am. Soc. Mass Spectrom. 10 (4), 300–308 (1999)

    Article  CAS  PubMed  Google Scholar 

  51. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 dalton, Anal. Chem. 60, 2299–2301 (1988)

    Article  CAS  PubMed  Google Scholar 

  52. Posthumus, M.A., Kistemeker, P.G., Menzelaar, H.L.C.: Anal. Chem. 60, 985 (1978)

    Article  Google Scholar 

  53. Hillenkamp, F.: Laser induced ion formation from organic solids. In: Ion Formation from Organic Solids, ed. by A. Benninghoven, Springer, Berlin Heidelberg New York (1983) pp. 190–205

    Google Scholar 

  54. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analysis up to m ∕ z 100,000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Article  CAS  Google Scholar 

  55. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted laser desorption of non-volatile compounds, Int. J. Mass Spectrom. Ion Processes 78, 53–68 (1987)

    Article  CAS  Google Scholar 

  56. Karas, M., Bahr, U., Hillenkamp, F.: UV laser matrix desorption/ionization mass spectrometry of proteins in the 100,000 dalton range, Int. J. Mass Spectrom. Ion Processes 92, 231–242 (1989)

    Article  CAS  Google Scholar 

  57. Karas, M., Bahr, U., Ingendoh, A., Nordhoff, E., Stahl, B., Strupat, K., Hillenkamp, F.: Principles and applications of matrix-assisted UV-laser desorption/ionization mass spectrometry, Anal. Chim. Acta 241, 175–185 (1990)

    Article  CAS  Google Scholar 

  58. Cotter, R.J.: Time of Flight Mass Spectrometry: Instrumentation and Applications to Biological Research, A.C. Society, Washington D.C. (1997)

    Google Scholar 

  59. Hillenkamp, F., Karas, M., Beavis, R.C., Chait, B.T.: Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers, Anal. Chem. 63, 1193A–1202A (1991)

    Article  CAS  PubMed  Google Scholar 

  60. Fenselau, C.: MALDI MS and strategies for protein analysis, Anal. Chem. 69 (21), 661A–665A (1997)

    CAS  PubMed  Google Scholar 

  61. Wong, C.K.L., So, M.P., Chan, T.-W.D.: Origins of the proton in the generation of protonated polymers and peptides in matrix-assisted laser desorption/ionization, Eur. J. Mass Spectrom. 4, 223–232 (1998)

    Article  CAS  Google Scholar 

  62. Bencsura, A., Navale, V., Sadeghi, M., Vertes, A.: Matrix–guest energy transfer in matrix-assisted laser desorption, Rapid Commun. Mass Spectrom. 11, 679–682 (1997)

    Article  CAS  Google Scholar 

  63. Carroll, J.A., Beavis, R.C.: Matrix-assisted laser desorption and ionization. In: Laser Desorption and Ablation, ed. by J.C. Miller and R.F. Haglund Jr., Experimental Methods in Physical Sciences (1999) Chap. 7

    Google Scholar 

  64. Li, Y., Hunter, R.L., McIver Jr., R.T.: High resolution mass spectrometer for protein chemistry, Nature 370 (4 August), 393–395 (1994)

    Google Scholar 

  65. McIver, R.T., Li, Y., Hunter, R.L.: High resolution laser desorption mass spectrometry of peptides and proteins, Proc. Natl. Acad. Sci. USA 91, 4801–4805 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Solouki, T., Marto, J.A., White, M.W., Guan, S., Marshall, A.G.: Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance, Anal. Chem. 67, 4139–4144 (1995)

    Article  CAS  PubMed  Google Scholar 

  67. Sheng, L.S., Covey, J.E., Shew, S.L., Winger, B.E., Campana, J.E.: Matrix-assisted laser desorption ionization Fourier-transform mass spectrometry, Rapid Commun. Mass Spectrom. 8, 498–500 (1994)

    Article  CAS  Google Scholar 

  68. Castoro, J.A., Wilkins, C.L., Woods, A.S., Cotter, R.J.: Peptide amino sequence analysis using matrix-assisted laser desorption/ionization and Fourier transform mass spectrometry, Biol. Mass Spectrom. 30, 94–98 (1995)

    Article  CAS  Google Scholar 

  69. Jonscher, K.R., Yates, J.R.: Matrix-assisted laser desorption ionization quadrupole ion trap mass spectrometry of peptides, J. Biol. Chem. 272 (3 January 1997), 1735–1741 (1997)

    Google Scholar 

  70. Schwartz, J.C., Bier, M.E.: Matrix-assisted laser desorption of peptides and proteins using a quadrupole ion trap mass spectrometer, Rapid Commun. Mass Spectrom. 7, 27–32 (1993)

    Article  CAS  Google Scholar 

  71. Doroshenko, V.M., Cotter, R.J.: A quadrupole ion trap/time-of-flight mass spectrometer with a parabolic reflectron, J. Mass Spectrom. 33 (4), 305–318 (1998)

    Article  CAS  PubMed  Google Scholar 

  72. Chambers, D.M., Goeringer, D.E., McClukey, S.A., Glish, G.L.: Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer, Anal. Chem. 65, 14–20 (1993)

    Article  CAS  Google Scholar 

  73. Bordoli, R.S., Howes, K., Vickers, R.G., Bateman, R.H., Harvey, D.J.: Matrix-assisted laser desorption mass spectrometry on a magnetic sector instrument fitted with an array detector, Rapid Commun. Mass Spectrom. 8, 585–589 (1994)

    Article  CAS  Google Scholar 

  74. Hill, J.A., Annan, R.S., Biemann, K.: Matrix-assisted laser desorption ionization with a magnetic mass spectrometer, Rapid Commun. Mass Spectrom. 5, 395–399 (1991)

    Article  CAS  PubMed  Google Scholar 

  75. Castaing, R., Slodzian, G.: Microanalyse par émission ionique secondaire, J. Microsc. 1, 395–410 (1962)

    CAS  Google Scholar 

  76. Chandra, S., Smith, D.R., Morrison, G.H.: Subcellular imaging by dynamic SIMS ion microscopy, Anal. Chem. 72 (3), 104A–114A (2000)

    Article  CAS  PubMed  Google Scholar 

  77. Tsien, R.Y.: Fluorescent probes of cell signaling, Ann. Rev. Neurosci. 12, 227–254 (1989)

    Article  CAS  PubMed  Google Scholar 

  78. Miyawki, A., et al.: Fluorescent indicators for Ca2 +  based on green fluorescent proteins and calmodulin, Nature 388, 882–887 (1997)

    Article  ADS  CAS  Google Scholar 

  79. Yeung, E.S.: Following single cell dynamics with native fluorescence microscopy, Anal. Chem. 71, 522A–529A (1999)

    Article  CAS  PubMed  Google Scholar 

  80. Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R., Webb, W.W.: Measuring serotonin distribution in live cells with three-photon excitation, Science 275, 530–532 (1997)

    Article  CAS  PubMed  Google Scholar 

  81. Somlyo, A.P., Bond, M., Somlyo, A.V.: Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314, 622–625 (1985)

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Buchanan, R.A., Leapman, R.D., O’Connell, M.F., Reese, T.S., Andrews, S.B.: Quantitative scanning transmission electron microscopy of ultrathin cryosections: Subcellular organelles in rapidly frozen liver and cerebellar cortex, J. Struct. Biol. 110, 245–255 (1993)

    Article  Google Scholar 

  83. McArthur, S.L., Vendettuoli, M.C., Ratner, B.D., Castner, D.G.: Methods for generating protein molecular ions in ToF–SIMS, Langmuir 20, 3704–3709 (2004)

    Article  CAS  PubMed  Google Scholar 

  84. Levi-Setti, R., Chabala, J.M., Wang, Y.-L.: Aspects of high resolution imaging with a scanning ion microprobe, Ultramicroscopy 24, 97–114 (1988)

    Article  CAS  Google Scholar 

  85. Slodzian, G., Daigne, B., Girard, F., Boust, F., Hillion, F.: Scanning secondary ion analytical microscopy with parallel detection, Biol. Cell. 74, 43–50 (1992)

    Article  CAS  PubMed  Google Scholar 

  86. Vos, J.W., Hepler, P.K.: Calmodulin is uniformly distributed during cell division in living stamen hair cells of Tradescantia virginiana, Protoplasma 201, 158–171 (1998)

    Article  CAS  Google Scholar 

  87. Chandra, S., Morrison, G.H., Wolcott, C.C.: Imaging intracellular elemental distribution and ion fluxes in cultured cells using ion microscopy: A freeze-fracture methodology, J. Microsc. (Oxford) 144, 15–37 (1986)

    Google Scholar 

  88. Ausserer, W.A., Chandra, S., Morrison, G.H.: Morphological and elemental integrity of freeze-fractured, freeze-dried cultured cells during ion microscopic analysis, J. Microsc. (Oxford) 154, 39–57 (1989)

    Google Scholar 

  89. Chandra, S., Morrison, G.H.: Sample preparation of animal tissues and cell cultures for secondary ion mass spectrometry (SIMS) microscopy, Biol. Cell 74, 31–42 (1992)

    Article  CAS  PubMed  Google Scholar 

  90. Pacholski, M.L., Cannon Jr., D.M., Ewing, A.G., Winograd, N.: Static time-of-flight secondary ion mass spectrometry imaging of freeze-fractured, frozen-hydrated biological membranes, Rapid Commun. Mass Spectrom. 12, 1232–1235 (1998)

    Article  CAS  PubMed  Google Scholar 

  91. Sod, E.W., Crooker, A.R., Morrison, G.H.: Biological cryosection preparation and practical ion yield evaluation for ion microscopic analysis, J. Microsc. (Oxford) 160, 55–65 (1990)

    Google Scholar 

  92. Touboul, D., Halgand, F., Brunelle, A., Kersting, R., Tallarek, E., Hagenhoff, B., Laprévote, O.: Tissue molecular ion imaging by gold cluster ion bombardment, Anal. Chem. 76, 1550–1559 (2004)

    Article  CAS  PubMed  Google Scholar 

  93. Touboul, D., Brunelle, A., Halgand, F., De La Porte, S., Laprevote, O.: Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: Application to Duchenne muscular dystrophy, J. Lipid Res. 46, 1388–1395 (2005)

    Article  CAS  PubMed  Google Scholar 

  94. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy, Chem. Phys. Lett. 25, 282–283 (1974)

    Article  CAS  ADS  Google Scholar 

  95. Marshall, A.G., Comisarow, M.B.: Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy, Chem. Phys. Lett. 26, 489–490 (1974)

    Article  ADS  Google Scholar 

  96. Senko, M.W., et al.: Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T, Rapid. Comm. Mass Spectrom. 10, 1824–1828 (1996)

    Google Scholar 

  97. Hofstadler, S.A., et al.: Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Rapid Comm. Mass Spectrom. 10, 919–922 (1996)

    Article  CAS  Google Scholar 

  98. Alomary, A., Anderson, T., Kahl, S., Solouki, T.: Development of mass spectral methods for direct and low level analysis of environmental pollutants, 363, 46th Amer. Soc. for Mass Spectrom. Annual Conf. on Mass Spectrometry and Allied Topics, Orlando, FL (May 1998)

    Google Scholar 

  99. Molnar, I., Horvath, C.: Separation of amino acids and peptides on non-polar stationary phases by high-performance liquid chromatography, J. Chromatogr. 142, 623–640 (1977)

    Article  CAS  PubMed  Google Scholar 

  100. Mönch, W., Dehnen, W.: High-performance liquid chromatography of peptides, J. Chromatogr. 140, 260–262 (1977)

    Article  PubMed  Google Scholar 

  101. O’Hare, M.J., Nice, E.C.: Hydrophobic high-performance liquid chromatography of hormonal polypeptides and proteins on alkylsilane-bonded silica, J. Chromatogr. 171, 209–226 (1979)

    Article  PubMed  Google Scholar 

  102. Mönch, W., Dehnen, W.: High-performance liquid chromatography of polypeptides and proteins on a reversed-phase support, J. Chromatogr. 147, 415–418 (1978)

    Article  Google Scholar 

  103. Hancock, W.S., Bishop, C.A., Prestidge, R.L., Harding, D.R., Hearn, M.T.: Reversed-phase, high-pressure liquid chromatography of peptides and proteins with ion-pairing reagents, Science 200 (4346), 1168–1170 (1978)

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Abian, J., Oosterkamp, A.J., Gelpi, E.: Comparison of conventional, narrow-bore and capillary chromatography/mass spectrometry for electrospray ionization mass spectrometry: Practical considerations, J. Mass Spectrom. 34, 244–254 (1999)

    Article  CAS  Google Scholar 

  105. Krutchinsky, A.N., Kalkum, M., Chait, B.T.: Automatic identification of proteins with a MALDI–quadrupole ion trap mass spectrometer, Anal. Chem. 73 (21), 5066–5077 (2001)

    Article  CAS  PubMed  Google Scholar 

  106. Krutchinsky, A.N., Zhang, W., Chait, B.T.: Rapidly switchable matrix-assisted laser desorption/ionization and electrospray quadrupole–time-of-flight mass spectrometry for protein identification, J. Am. Soc. Mass Spectrom. 11 (6), 493–504 (2000)

    Article  CAS  PubMed  Google Scholar 

  107. Griffin, T.J., Gygi, S.P., Rist, B., Aebersold, R., Loboda, A., Jilkine, A., Ens, W., Standing, K.G.: Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer, Anal. Chem. 73 (5), 978–986 (2001)

    Article  CAS  PubMed  Google Scholar 

  108. Wattenberg, A., Organ, A.J., Schneider, K., Tyldesley, R., Bordoli, R., Bateman, R.H.: Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q–TOF) mass spectrometry and its implications for protein identification, J. Am. Soc. Mass Spectrom. 13 (7), 772–783 (2002)

    Article  CAS  PubMed  Google Scholar 

  109. Bienvenut, W.V., Deon, C., Pasquarello, C., Campbell, J.M., Sanchez, J.C., Vestal, M.L., Hochstrasser, D.F.: Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins, Proteomics 2 (7), 868–876 (2002)

    Article  CAS  PubMed  Google Scholar 

  110. Griffin, T.J., Lock, C.M., Li, X.J., Patel, A., Chervetsova, I., Lee, H., Wright, M.E., Ranish, J.A., Chen, S.S., Aebersold, R.: Abundance ratio-dependent proteomic analysis by mass spectrometry, Anal. Chem. 75 (4), 867–874 (2003)

    Article  CAS  PubMed  Google Scholar 

  111. Griffin, T.J., Li, X.-J., Lock, C.M., Chervetsova, I., Marelli, M., Aitchison, J.D., Aebersold, R.: Complex protein mixture analysis by LC–MALDI–TOF hybrid mass spectrometry: Evaluating the performance and potential for high throughput proteomic analysis, 51st Conference on Mass Spectrometry and Allied Topics, Poster WPX487 Montreal, Quebec, Canada (8–12 June 2003)

    Google Scholar 

  112. Bodnar, W.M., Blackburn, R.K., Krise, J.M., Moseley, M.A.: Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage, J. Am. Soc. Mass Spectrom. 14 (9), 971–979 (2003)

    Article  CAS  PubMed  Google Scholar 

  113. Hansen, A.M., Nielsen, P.F., Jensen, O.N., Krogh, T.N.: Differences and complementarities of LC–QTOF and LC–MALDI TOFTOF datasets, 51st Conference on Mass Spectrometry and Allied Topics, Poster WPW446, Montreal, Quebec, Canada (8–12 June 2003)

    Google Scholar 

  114. Griffin, T.J., Lock, C.M., Li, X.J., Patel, A., Chervetsova, I., Lee, H., Wright, M.E., Ranish, J.A., Chen, S.S., Aebersold, R.: Abundance ratio-dependent proteomic analysis by mass spectrometry, Anal. Chem. 75 (4), 867–874 (2003)

    Article  CAS  PubMed  Google Scholar 

  115. Bodnar, W.M., Blackburn, R.K., Krise, J.M., Moseley, M.A.: Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage, J. Am. Soc. Mass Spectrom. 14 (9), 971–979 (2003)

    Article  CAS  PubMed  Google Scholar 

  116. Wattenberg, A., Organ, A.J., Schneider, K., Tyldesley, R., Bordoli, R., Bateman, R.H.: Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI QTOF) mass spectrometry and its implications for protein identification, J. Am. Soc. Mass Spectrom. 13 (7), 772–783 (2002)

    Article  CAS  PubMed  Google Scholar 

  117. Stutz, H.: Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray mass spectrometry detection, Electrophoresis 26, 1254–1290 (2005)

    Article  CAS  PubMed  Google Scholar 

  118. Ding, J., Vouros, P.: Advances in CE/MS, Anal. Chem. 71, 378A–385A (1999)

    CAS  PubMed  Google Scholar 

  119. Hsieh, F., Baronas, E., Muir, C., Martin, S.A.: A novel nanospray capillary zone electrophoresis/mass spectrometry interface, Rapid Commun Mass Spectrom. 13, 67–72 (1999)

    Article  CAS  PubMed  Google Scholar 

  120. Wittke, S., Fliser, D., Haubitz, M., Bartel, S., Krebs, R., Hausadel, F., Hillman, M., Golovko, I., Koester, P., Haller, H., Kaiser, T., Mischak, H., Weissinger, E.: Determination of peptides and proteins in human urine with capillary electrophoresis mass spectrometry, a suitable tool for the establishment of new diagnostic markers, J. Chromatogr. A 1013, 173–181 (2003)

    Article  CAS  PubMed  Google Scholar 

  121. Guzman, N.: Determination of immunoreactive gonadotropin-releasing hormone in serum and urine by on-line immunoaffinity capillary electrophoresis coupled to mass spectrometry, J. Chromatogr. B 749, 197–213 (2000)

    Article  CAS  Google Scholar 

  122. Barcelo-Barrachina, E., Moyano, E., Galceran, M.T.: State-of-the-art of the hyphenation of capillary electrochromatography with mass spectrometry, Electrophoresis 25, 1927–1948 (2004)

    Article  CAS  PubMed  Google Scholar 

  123. Jensen, P.K., Pasa-Tolic, L., Peden, K.K., Martinovic, S., Lipton, M.S., Anderson, G.A., Tolic, N., Wong, K.K., Smith, R.D.: Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures, Electrophoresis 21, 1372–1380 (2000)

    Article  CAS  PubMed  Google Scholar 

  124. Page, J.S., Rubakhin, S.S., Sweedler, J.V.: Single-neuron analysis using CE combined with MALDI MS and radionuclide detection, Anal. Chem. 74, 497–503 (2002)

    Article  CAS  PubMed  Google Scholar 

  125. Schmidt, A., Karas, M., Dülcks, T.: Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: When does ESI turn into nano-ESI?, J. Am. Soc. Mass Spectrom. 14, 492–500 (2003)

    Article  CAS  PubMed  Google Scholar 

  126. Sung, W.C., Makamba, H., Chen, S.H.: Chip-based microfluidic devices coupled with electrospray ionization mass spectrometry, Electrophoresis 26, 1783–1791 (2005)

    Article  CAS  PubMed  Google Scholar 

  127. Ramsey, R.S., Ramsey, J.M.: Generating electrospray from microchip devices using electroosmotic pumping, Anal. Chem. 69, 1174–1178 (1997)

    Article  CAS  Google Scholar 

  128. Xue, Q., Foret, F., Dunayevskiy, Y.M., Zavracky, P.M., McGruer, N.E., Karger, B.L.: Multichannel microchip electrospray mass spectrometry, Anal. Chem. 69 (3), 426–430 (1997)

    Article  CAS  PubMed  Google Scholar 

  129. Wen, J., Lin, Y., Xiang, F., Matson, D.W., Udseth, H.R., Smith, R.D.: Microfabricated isoelectric focusing device for direct electrospray ionization mass spectrometry, Electrophoresis 21, 191–197 (2000)

    Article  CAS  PubMed  Google Scholar 

  130. Figeys, D., Ning, Y., Aebersold, R.: A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry, Anal. Chem. 69 (16), 3153–3160 (1997)

    Article  CAS  PubMed  Google Scholar 

  131. Yin, H., Killeen, K., Brennen, R., Sobek, D., Werlich, M., van de Goor, T.: Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip, Anal. Chem., 77, 527–533 (2005)

    Article  CAS  PubMed  Google Scholar 

  132. Fortier, M.H., Bonneil, E., Goodley, P., Thibault, P.: Integrated microfluidic device for mass spectrometry-based proteomics and its application to biomarker discovery programs, Anal. Chem. 77, 1631–1640 (2005)

    Article  CAS  PubMed  Google Scholar 

  133. Schultz, G.A., Corso, T.N., Prosser, S.J., Zhang, S.: A fully integrated monolithic microchip electrospray device for mass spectrometry, Anal. Chem. 72, 4058–4063 (2000)

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, S., Van Pelt, C.K., Henion, J.D.: Automated chip-based nanoelectrospray mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis, Electrophoresis 24, 3620–3632 (2003)

    Article  CAS  PubMed  Google Scholar 

  135. Dethy, J.M., Ackermann, B.L., Delatour, C., Henion, J.D., Schultz, G.A.: Demonstration of direct bioanalysis of drugs in plasma using nanoelectrospray infusion from a silicon chip coupled with tandem mass spectrometry, Anal. Chem. 75 (4), 805–811 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pflieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pflieger, D., Forest, E., Vinh, J. (2009). Mass Spectrometry. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_10

Download citation

Publish with us

Policies and ethics