Skip to main content

Structural and Functional Regulation of DNA: Geometry, Topology and Methylation

  • Chapter
  • First Online:
Nanoscience
  • 2270 Accesses

Abstract

The work of Rosalind Franklin, then Watson and Crick [1], established the architecture of deoxyribose nucleic acid (DNA), carrier of all genetic information. The idea that DNA was structurally organised in the form of a double helix comprising two antiparallel and complementary polymer chains was one of the great scientific discoveries of the twentieth century. It revealed not only the way in which genetic information is stored, but also the mechanism by which the genetic code is read, and the way this code can be faultlessly copied from one cell to another during cell division.

The structural organisation of genomic DNA varies significantly from one organism to another, or from one cell to another, depending as it does on the physiological constraints specific to each organism or tissue. This complexity can be observed in particular in the diversity of genomic sequences, the size of the human genome being something like 3 gigabases for about 30,000 genes, whereas yeast, a lower eukaryotic organism, only possesses 6,200 genes for a size of 13 megabases (see Table 1.1). The fraction of protein-coding sequences is also highly variable (1.4% for the human genome, 68% for the yeast genome), and so too is the size of the genes. Particularly interesting is the variation in the content of G+C bases, which determines the overall stability of the DNA helices. Sequences rich in G+C bases are involved in the key processes regulating gene expression and probably in a dominant way in dynamical processes. An important point is the possibility of methylating cytosines, especially the CpG sequences, a crucial process in the control of gene expression. The presence of alternating sequences of GC base pairs, associated with the methylation of the cytosines in these sequences, favours in particular the transition from the B to the Z conformation (see below). Within a given genome, the G+C content can vary significantly, reaching 80% in some regions of mammal genomes, and there seems to be a correlation between the GC base content (especially GCs3) and the gene density in the relevant region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids, Nature 171, 737 (1953)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. De Santis, P., Palleschi, A., Savino, M., and Scipioni, A.: Biochemistry 29, 9269 (1990)

    Article  PubMed  Google Scholar 

  3. Bolshoy, A., McNamara, P., Harrington, R.E., Trifonov E.N.: Proc. Natl. Acad. Sci. USA 88, 2312 (1991)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. http://rumour.biology.gatech.edu

  5. Djuranovic, D., Hartmann, B.: Conformational characteristics and correlations in crystal structure of nucleic acid oligonucleotides: Evidence of sub-states, J. Biomol. Struct. Dyn. 20 (6), 1 (2003)

    Google Scholar 

  6. Mirau, P.A., Kearns, D.R.: Unusual proton exchange properties of Z-form poly[d(G-C)], Proc. Natl. Acad. Sci. USA 82, 1594 (1985)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Misra, V.K., Honig, B.: The electrostatic contribution to the B to Z transition of DNA, Biochemistry 35, 1115 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Kawaga, T.F., Howell, M.L., Tseng, K., Ho, P.S.: Effects of base substituents on the hydration of B- and Z-DNA: Correlations to the B- to Z-DNA transition, Nucleic Acids Research 21, 255978 (1993)

    Google Scholar 

  9. Peck, L.J., Wang, J.C.: Energetics of B-to-Z transition in DNA, Proc. Natl. Acad. Sci. USA 80, 6206 (1983)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Le Ber, P., Schwaller, M.A., Auclair, C.: Effect of intercalative binding compared to external binding on Z/B equilibrium of poly-d(Gme5C) using fluorescent oxazolopyridocarbazoles as probes, J. Mol. Recognit. 2 (4), 152–157 (1989)

    Article  PubMed  Google Scholar 

  11. Ha, S.C., Lowenhaupt, K., Rich, A., Kim, Y.G., Kim, K.K.: Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases, Nature 437, 1183 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A., Rich, A.: Crystal structure of the Za domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA, Science 284, 1841–1845 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Osipiuk, J., Skarina, T., Edwards, A., Savchenko, A., Joachimiak, A.: 1.55 Å crystal structure of putative Z-DNA binding protein AF2008 from Archaeoglobus fulgidus, ACA05 W0243

    Google Scholar 

  14. Witting, B., Wolfl, S., Dorbic, T., Vahrson, W., Rich, A.: Transcription of human C-MYC in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene, EMBO J. 11, 4653 (1992)

    Google Scholar 

  15. Kwon, J.A., Rich, A.: Biological function of the vaccinia virus Z-DNA-binding protein E3L: Gene transactivation and antiapoptotic activity in HeLa cells, Proc. Natl. Acad. Sci. USA. 102, 12759 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Champ, P.C., Maurice, S., Vargason, J.M., Camp, T., Ho, P.S.: Distributions of Z-DNA and nuclear factor I in human chromosome 22: A model for coupled transcriptional regulation, Nucleic Acids Research 32, 6501 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Hamiche, A., Carot, V., Alilat, M., De Lucia, F., O’Donohue, M.F., Revet, B., Prunell, A.: Interaction of the histone (H3-H4)2 tetramer of the nucleosome with positively supercoiled DNA minicircles. Potential flipping of the protein from a left- to a right-handed superhelical form, Proc. Natl. Acad. Sci. USA 93, 7588 (1996)

    Google Scholar 

  18. Wang, J.C., Jacobsen, J.H., Saucier, J.-M.: Physiochemical studies on interactions between DNA and RNA polymerase. Unwinding of the DNA helix by Escherichia coli RNA polymerase, Nucleic Acids Res. 4, 1225 (1977)

    Article  CAS  PubMed  Google Scholar 

  19. Liu, L.F., Wang, J.C.: Supercoiling of the DNA template during transcription, Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Lilley, D.M.: The inverted repeat as a recognizable structural feature in supercoiled DNA molecules, Proc. Natl. Acad. Sci. USA 77, 6468–6472 (1980)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Ward, G.K., McKenzie, R., Zannis-Hadjopoulos, M., Price, G.B.: The dynamic distribution and quantification of DNA cruciforms in eukaryotic nuclei, Exper. Cell Res. 188, 235 (1990)

    Article  CAS  Google Scholar 

  22. Baylin S.B., Herman, J.G.: DNA hypermethylation in tumorigenesis: Epigenetics joins genetics, Trends Genet. 16, 168 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno, S., Chijiwa, T., Okamura, T., Akashi, K., Fukumaki, Y., Niho, Y., Sasaki, H.: Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukaemia, Blood 97, 1172 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Bird, A.P.: CpG-rich islands and the function of DNA methylation, Nature 321 (6067), 209 (1986)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Pollack, Y., Kasir, J., Shemer, R., Metzger, S., Szyf, M.: Methylation pattern of mouse mitochondrial DNA, Nucleic Acids Res. 12 (12), 4811 (1984)

    Article  CAS  PubMed  Google Scholar 

  26. Gardiner-Garden, M., Frommer, M.: CpG islands in vertebrate genomes, J. Mol. Biol. 196 (2), 261 (1987)

    Article  CAS  PubMed  Google Scholar 

  27. Fu, Y.H., Kuhl, D.P., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Richards, S., et al.: Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox, Cell 67, 1047 (1991)

    Article  CAS  PubMed  Google Scholar 

  28. Sukhodub, L.F., Yanson, I.K.: Mass-spectrometric studies of binding energies for nitrogen bases of nucleic acids in vacuo, Nature 264 (5583), 245 (1976)

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Mayer-Jung, C., Moras, D., Timsit, Y.: Effect of cytosine methylation on DNA–DNA recognition at CpG steps, J. Mol. Biol. 270 (3), 328 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Derreumaux, S., Chaoui, M., Tevanian, G., Fermandjian, S.: Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element, Nucleic Acids Research 29 (11), 2314 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Nan, X., Meehan, R.R., Bird, A.: Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2, Nucleic Acids Res. 21, 4886 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F., Bird, A.: Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA, Cell 69, 905 (1992)

    Article  CAS  PubMed  Google Scholar 

  33. Free, A., Wakefield, R.I., Smith, B.O., Dryden, D.T., Barlow, P.N., Bird, A.P.: DNA recognition by the methyl-CpG binding domain of MeCP2, J. Biol. Chem. 276, 3353 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Auclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auclair, C. (2009). Structural and Functional Regulation of DNA: Geometry, Topology and Methylation. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_1

Download citation

Publish with us

Policies and ethics