Advertisement

OD Count Estimation Based on Link Count Data

  • Yi Jin
  • Dongchen Jiang
  • Shuai Yuan
  • Jianting Cao
  • Lili Wang
  • Gang Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5297)

Abstract

TM (Traffic Matrix) estimation is a hot research area recently. Current TM estimation methods are generally designed for backbone and ISP networks. They estimate complete TM which is unnecessary for many IP networks in reality and especially unsuitable for the networks that have many entries. In this paper, we propose an estimation algorithm that is designed for IP networks on link layer. Our algorithm estimates the OD (Origin and Destination pair) count on the basis of link counts which are easy to obtain. Our algorithm first builds a three-entry virtual network from actual network, and then achieves the final result by multivariate linear regression. We verify our algorithm in the official network of our lab by comparing with exact OD count data that are obtained by NetFlow.

Keywords

Traffic Matrix OD Count Link Count Multivariate Linear Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, J., Davis, D., Wiel, S., Yu, B.: Time-varying network tomography: Router link data. Journal of the American Statistical Association 95(452) (December 2000)Google Scholar
  2. 2.
    Cicso Systems. Introduction to Cisco IOS NetFlow - A Technical OverviewGoogle Scholar
  3. 3.
    Gunnar, A., Johansson, M., Telkamp, T.: Traffic matrix estimation on a large ip backbone - a comparison on real data. In: Proceeding ACM IMC 2004, October 2004, pp. 149–160. ACM Press, New York (2004)Google Scholar
  4. 4.
    Juva, I., Vaton, S., Virtamo, J.: Quick traffic matrix estimation based on link count covariances. In: IEEE International Conference on Communications (ICC 2006), vol. 2 (June 2006)Google Scholar
  5. 5.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic (extended version). IEEE ACM Transactions on Networking (TON) 2(1) (February 1994)Google Scholar
  6. 6.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: existing techniques and new directions. ACM SIGCOMM Computer Communication Review 32(4) (October 2002)Google Scholar
  7. 7.
    Paxson, V., Floyd, S.: Wide-area traffic: The failure of poisson modeling. IEEE/slashACM Transactions on Networking 3(3), 226–244 (1995)CrossRefGoogle Scholar
  8. 8.
    Vardi, Y.: Network tomography:esitimating source-destination traffic intensities from link data. Journal of the American Statistical Association 91(433) (March 1996)Google Scholar
  9. 9.
    Errmailli, V., Crovella, M., Taft, N.: An Independent-Connection Model for Traffic Matrices. In: Proceeding ACM IMC 2006, October 2006. ACM Press, New York (2006)Google Scholar
  10. 10.
    Claise, B. (ed.): Cisco Systems NetFlow Services Export Version 9, RFC3954 (October 2004), http://www.ietf.org/rfc/rfc3954.txt
  11. 11.
    Phaal, P.: InMon Corporation’s sFlow: A Method for Monitoring Traffic in Switched and Routed Networks, RFC3176 (September 2001), http://www.ietf.org/rfc/rfc3176.txt

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yi Jin
    • 1
  • Dongchen Jiang
    • 1
  • Shuai Yuan
    • 1
  • Jianting Cao
    • 1
  • Lili Wang
    • 2
  • Gang Zhou
    • 1
  1. 1.State Key Lab. of Software Development EnvironmentBeihang UniversityBeijingChina
  2. 2.School of Computer Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations