Skip to main content

Representing Interpolant Topology for Contour Tree Computation

  • Chapter
Topology-Based Methods in Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Algorithms for computing contour trees for visualization commonly assume that the input is defined by barycentric interpolation on simplicial meshes or by trilinear interpolation on cubic meshes. In this paper, we describe a general framework for computing contour trees from a graph that captures all significant topological features. We show how to construct these graphs from any mesh-based interpolant by using cell-by-cell “widgets,” and also how to avoid constructing the entire graphs by making finite state machines that capture their traversals.

Our framework eases algorithm development and implementation, and can be used to establish relationships between interpolants. For example, we use it to demonstrate a formal equivalence between the topology defined by implicitly dis-ambiguated marching cubes cases and the topology induced by 8-/18- digital image connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The Contour Spectrum. In P roceedin gs of Visualization 1997, pages 167–173, 1997.

    Google Scholar 

  2. P. Bhaniramka, R. Wenger, and R. A. Crawfis. Isosurface Construction in Any Dimension Using Convex Hulls. IEEE Transactions on Visualization and Computer Graphics, 10(2):130–141, 2004.

    Article  Google Scholar 

  3. R. L. Boyell and H. Ruston. Hybrid Techniques for Real-time Radar Simulation. In Proceedi ngs of the 1963 Fall Joint Computer Conference, pages 445–458. IEEE, 1963.

    Google Scholar 

  4. H. Carr, T. Möller, and J. Snoeyink. Simplicial Subdivisions and Sampling Artifacts. In Proceedi ngs of V i su alizati on 2001, pages 99–106, 2001.

    Google Scholar 

  5. H. Carr and J. Snoeyink. Path Seeds and Flexible Isosurfaces: Using Topol ogy for Exploratory Visualization. In Proceedings of Eurographics Visualization Symposium 2003, pages 49–58, 285, 2003.

    Google Scholar 

  6. H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All Dimensions. Computational Geometry: Theory and Applications, 24(2):75–94, 2003.

    MATH  MathSciNet  Google Scholar 

  7. H. Carr, J. Snoeyink, and M. van de Panne. Simplifying Flexible Isosurfaces with Local Geometric Measures. In Proceedings of Visualization 2004, pages 497–504, 2004.

    Google Scholar 

  8. H. Carr, T. Theuβl, and T. Möller. Isosurfaces on Optimal Regular Samples. In Proceedings of Eurographics Visualization Symposium 2003, pages 39–48, 284, 2003.

    Google Scholar 

  9. Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal Output-Sensitive Construction of Contour Trees Using Monotone Paths. Computational Geometry: Theory and Applications, 30:165–195, 2005.

    MATH  MathSciNet  Google Scholar 

  10. Y.-J. Chiang and X. Lu. Progressive Simplification of Tetrahedral Meshes Preserving All Isosurface Topologies. Computer Graphics Forum, 22(3), 2003.

    Google Scholar 

  11. M. Dürst. Letters: Additional Reference to “Marching Cubes”. Computer Graphics, 22(4):65–74, 1988.

    Article  Google Scholar 

  12. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. In Proceedings of the 17th AC M Symposi um on Computational Geometry, pages 70–79. ACM, 2001.

    Google Scholar 

  13. H. Freeman and S. Morse. On Searching A Contour Map for a Given Terrain Elevation Profile. Journal of the Franklin Institute, 284(1):1–25, 1967.

    Article  Google Scholar 

  14. L. Kettner, J. Rossignac, and J. Snoeyink. The Safari Interface for Visual izing Time-Dependent Volume Data Using Iso-surfaces and Contour Spectra. Computational Geometry: Theory and Applications, 25(1–2):97–116, 2001.

    Google Scholar 

  15. A. Lopes and K. Brodlie. Improving the robustness and accuracy of the march ing cubes algorithm for isosurfacing. IEEE Transactions on Visualization and Computer Graphics, 9(1):16–29, 2003.

    Article  Google Scholar 

  16. W. E. Lorenson and H. E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4):163–169, 1987.

    Article  Google Scholar 

  17. J. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  18. S. Mizuta and T. Matsuda. Description of the Topological Structure of Digital Images by Region-based Contour Tree and Its Application. Technical report, Institute of Electronics, Information and Communication Engineers, 2004.

    Google Scholar 

  19. C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for implicit disambiguation of Marching Cubes. Visual Computer, 10:353–355, 1994.

    Article  Google Scholar 

  20. B. Natarajan. On generating topologically consistent isosurfaces from uniform samples. Visual Computer, 11:52–62, 1994.

    Article  Google Scholar 

  21. G. M. Nielson. On Marching Cubes. IEEE Transactions on Visualization and Computer Graphics, 9(3):283–297, 2003.

    Article  Google Scholar 

  22. G. M. Nielson and B. Hamann. The Asymptotic Decider: Resolving the Ambi guity in Marching Cubes. In P roceedings of Visualization 1991, pages 83–91. IEEE, 1991.

    Google Scholar 

  23. V. Pascucci. On the Topology of the Level Sets of a Scalar Field. In Abstracts of the 13th Canadian Conference on Computational Geometry, pages 141–144, 2001.

    Google Scholar 

  24. V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the Topology of Level Sets. Algorithmica, 38(2):249–268, 2003.

    Article  MathSciNet  Google Scholar 

  25. G. Reeb. Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Comptes Rendus de l'Acadèmie des Sciences de Paris, 222:847–849, 1946.

    MATH  MathSciNet  Google Scholar 

  26. Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface Coding Based on Morse Theory. IEEE Computer Graphics and Applications, 11:66–78, September 1991.

    Article  Google Scholar 

  27. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data. Computer Graphics Forum, 14(3):C– 181-C-192, 1995.

    Article  Google Scholar 

  28. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its application to transfer function design. Graphical Models, 66(1):24–49, 2004.

    Article  MATH  Google Scholar 

  29. S. P. Tarasov and M. N. Vyalyi. Construction of Contour Trees in 3D in O(n log n) steps. In Proceedings of the 14th ACM Symposium on Computational Geometry, pages 68–75, 1998.

    Google Scholar 

  30. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22:215–225, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal. In Proceedi ngs of the 13th ACM Symposium on Computational Geometry, pages 212–220, 1997.

    Google Scholar 

  32. G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-based, flexible volume rendering. To appear in IEEE Transactions on Visualization and Computer Graphics, 2007.

    Google Scholar 

  33. X. Zhang, C. L. Bajaj, and N. Baker. Fast Matching of Volumetric Functions Using Multi-resolution Dual Contour Trees. Technical report, Texas Institute for Computational and Applied Mathematics, Austin, Texas, 2004.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carr, H., Snoeyink, J. (2009). Representing Interpolant Topology for Contour Tree Computation. In: Hege, HC., Polthier, K., Scheuermann, G. (eds) Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88606-8_5

Download citation

Publish with us

Policies and ethics