Skip to main content

Streamline and Vortex Line Analysis of the Vortex Breakdown in a Confined Cylinder Flow

  • Chapter
Topology-Based Methods in Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1649 Accesses

Summary

The vortex breakdown phenomenon occurring in a rotating flow within a closed cylinder is still a challenging research field. In particular the goal to describe all significant order parameters of vortex breakdown is not reached. For further insight the viscous and laminar Newtonian flow inside a cylinder with a rotating lid has been calculated by solving the full Navier Stokes equations. During the sim ulation the rotational speed of the lid has been increased, which causes a gradual transition of the internal flow field topology. Starting from a flow field without any reversed flow at the vortex axis the vortex breakdown phenomenon develops indi cated by one or more vortex breakdown bubbles. A phenomenological description of the vortex breakdown process is given by applying a topological analysis to the flow field, which illustrates the main flow structures, their behaviour and changes. By visualization of critical points, at which the velocity magnitude vanishes, the topological flow structure change of the velocity field becomes obvious. Additionally their associated separatrices are integrated into the field, which allows to illustrate the shape of the vortex breakdown bubbles. In particular the spherical shape of the first appearing breakdown bubble leads to the idea to introduce a streamfunction, which describes the spherical breakdown bubble approximately. Applying a Taylor expansion of the velocity field leads to an analytical description of the local stream line topology nearby one critical point of a breakdown bubble. The interpretation of the appendant differential equations allows a deeper insight into the dynamical behaviour of the breakdown phenomenon and its main enforcing parameters. The paper presents the results of a local streamline and vortex line topology analysis, especially the dynamical relation between the velocity and vorticity field in regard to the topological structure of the vortex breakdown phenomenon in the lid driven cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker, P. G.: Bifurcations in Flow Patterns. PhD thesis, Delft University of Technology, 1988

    Google Scholar 

  2. Bakker, P. G., de Winkel, M. E. M.: On the topology of three-dimensional separated flow structures an local solutions of the Navier-Stokes equations. Topological Fluid Mechanics, Proc. of the IUTAM Symposium, Cambridge, Aug. 13–18, 1989

    Google Scholar 

  3. Böhme, G.: Strömungsmechanik nichtnewtonscher Fluide, B.G. Teubner, Stuttgart 2000

    Google Scholar 

  4. Böhme, G., Rubart, L., Stenger, M.: Vortex breakdown in shear-thinning liquids: experiment and numerical simulation. J. Non-Newt. Fluid Mech. 45 (1992), pp. 1–20

    Google Scholar 

  5. Brons, M., Voigt, L. K., Sorensen, J. N.: Streamline topology of steady axisym-metric vortex breakdown in a cylinder with co- and counter-rotating end-covers. J. Fluid Mech. (1999), vol. 401, pp. 275–292

    Article  MathSciNet  Google Scholar 

  6. Chabral, B.; Leedom, L. C.: Imaging Vector Fields Using Line Integral Convolution. In: Proceedings of SIGGRAPH '93. New York, 1993, pp. 263–270

    Google Scholar 

  7. Chong, M. S., Perry, A. E., Cantwell, B. J.: A general classification of three-dimensional flow fields. Phys. Fluids A, vol. 2, no. 5, 1990, pp. 261–265

    Article  MathSciNet  Google Scholar 

  8. Dallmann, U.: Three-dimensional vortex structures and vorticity topology. Pro ceedings of the IUTAM Symposium on Fundamental Aspects of Vortex Motion, Tokyo, Japan, 1987

    Google Scholar 

  9. Dallmann, U.: Analysis of Simulations of Topologically Changing Three-Dimensional Separated Flows. IUTAM Symposium on “Separated Flows and Jets”, Novosibirsk, 1990

    Google Scholar 

  10. Darmofal, D. L.: The Role of Vorticity Dynamics in Vortex Breakdown, AIAA 93–3036

    Google Scholar 

  11. Delery, J. M.: Aspects Of Vortex Breakdown. Prog. Aerospace Sci, vol. 30, pp. 1–59, 1994

    Article  Google Scholar 

  12. Escudier, M. P.: Observations of the flow produced in a cylindrical container by a rotating endwall. Exps. Fluids 2 (1984), pp. 189–196

    Article  Google Scholar 

  13. Escudier, M. P.: Vortex Breakdown: Observation And Explanation. Prog. Aerospace Sci Vol. 25, pp. 189–229, 1988

    Article  Google Scholar 

  14. Faler, J. H., Leibovich, S.; An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. (1978), vol 86, pp. 313–335

    Article  Google Scholar 

  15. Goldshtik, M., Hussain, F.: The nature of vortex breakdown, Phys. Fluids 9, pp. 263–265, 1997

    Article  Google Scholar 

  16. Helman, J., Hesselink L.: Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, vol. 11, no. 3, May 1991, pp. 36–46

    Article  Google Scholar 

  17. Hesselink, L. Delmarcell, T.: Visualization of vector and tensor data sets, In Sci entific visualization — Advances and challenges. L. Rosenblum, R. A. Earnshaw, J. Encarnacao, H. Hage, A. Kaufman, S. Klimenko, G. Nielson, F. Post and D. Thalman, Eds. Academic Press, 1994, pp. 367–390

    Google Scholar 

  18. Hussain, H. S., Hussain, F., Goldshtik, M.: Anomalous separation of homo geneous particle-fluid mixture: Further observations. Phys. Rev. E 52, pp. 4909–4923, 1995

    Article  MathSciNet  Google Scholar 

  19. Kenwright, D. N., Henze, C., Levit, C.: Feature Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 2, 1999

    Google Scholar 

  20. Leibovich, S.: The structure of vortex breakdown, Ann. Rev. Fluid Mech. 10, pp. 221–246, 1978

    Article  Google Scholar 

  21. Lopez J. M., Brown G. L.: Physical Mechanism Of Axisymmetric Vortex Breakdown. Tenth Australasian Fluid Mechanics Conference, University of Melbourne, 1989

    Google Scholar 

  22. Lugt, H. J., Hausling, H. J.: Axisymmetric vortex breakdown in rotating fluid within a container, ASME J. Appl. Mech. 49(4), pp. 921–922, 1982

    Article  Google Scholar 

  23. Perry, A. E., Chong, M. S.: A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech., vol. 19, 1987, pp. 125–155

    Article  Google Scholar 

  24. Reyn, W. J.: Classification and Description of the Singular Points of a System of Three Linear Differential Equations. ZAMP, vol. 15, 1964

    Google Scholar 

  25. Sarpkaya, T.: Vortex Breakdown and Turbulence, AIAA 95–0433

    Google Scholar 

  26. Sardajoen, I. A.: Extraction and Visualization of Geometries in Fluid Flow Fields. PhD thesis, Delft University of Technology, 1999

    Google Scholar 

  27. Sotiropoulos, F., Ventikos, Y.: The three-dimensional structure of confined swirling flows with vortex breakdown. J. Fluid Mech. (2001), vol. 426, pp. 155–175

    Article  MATH  MathSciNet  Google Scholar 

  28. Spohn, A., Mory, M., Hopfinger, E.J.: Experiments on vortex breakdown in a confined flow generated with rotating bottom disk. J. Fluid Mech. (1998), vol. 370, pp. 73–99

    Article  MATH  Google Scholar 

  29. Theisel, H., Weinkauf, T., Hege H.-C., Seidel, H.-P.: Stream Line and Path Line Orientated Topology for 2D Time-Dependent Vector Fields, In Proceeding IEEE Visualization 2004, pp. 321–328, 2004

    Google Scholar 

  30. Tricoche X., Garth C., Kindlmann G., Deines E., Scheuermann G., Rütten M., Hansen C.: Visualization of Intricate Flow Structures for Vortex Breakdown Analysis. In Proc. of the IEEE Visualization '04 Conf., pp. 187–194, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rutten, M., Böhme, G. (2009). Streamline and Vortex Line Analysis of the Vortex Breakdown in a Confined Cylinder Flow. In: Hege, HC., Polthier, K., Scheuermann, G. (eds) Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88606-8_10

Download citation

Publish with us

Policies and ethics