Skip to main content

Large-Scale Design Space Exploration of SSA

  • Conference paper
Computational Methods in Systems Biology (CMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5307))

Included in the following conference series:

Abstract

Stochastic simulation algorithms (SSA) are popular methods for the simulation of chemical reaction networks, so that various enhancements have been introduced and evaluated over the years. However, neither theoretical analysis nor empirical comparisons of single implementations suffice to capture the general performance of a method. This makes choosing an appropriate algorithm very hard for anyone who is not an expert in the field, especially if the system provides many alternative implementations. We argue that this problem can only be solved by thoroughly exploring the design spaces of such algorithms. This paper presents the results of an empirical study, which subsumes several thousand simulation runs. It aims at exploring the performance of different SSA implementations and comparing them to an approximation via τ-Leaping, while using different event queues and random number generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Gillespie, D.: A rigorous derivation of the chemical master equation. Physica A Statistical Mechanics and its Applications 188, 404–425 (1992)

    Article  CAS  Google Scholar 

  3. Macnamara, S., Burrage, K., Sidje, R.B.: Multiscale modeling of chemical kinetics via the master equation. Multiscale Modeling & Simulation 6(4), 1146–1168 (2008)

    Article  CAS  Google Scholar 

  4. Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25) (1977)

    Google Scholar 

  5. Sandmann, W.: Simultaneous stochastic simulation of multiple perturbations in biological network models (2007)

    Google Scholar 

  6. Gillespie, D.: Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics 115(4), 1716–1733 (2001)

    Article  CAS  Google Scholar 

  7. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1) (January 2005)

    Google Scholar 

  8. Weinan, E., Di, L., Vanden-Eijnden, E.: Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J. Comput. Phys. 221(1), 158–180 (2007)

    Article  Google Scholar 

  9. McGeoch, C.: Experimental algorithmics. Communications of the ACM 50(11), 27–31 (2007)

    Article  Google Scholar 

  10. LaMarca, A., Ladner, R.: The influence of caches on the performance of sorting. In: SODA 1997: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 370–379 (1997)

    Google Scholar 

  11. Uhrmacher, A., Himmelspach, J., Jeschke, M., John, M., Leye, S., Maus, C., Röhl, M., Ewald, R.: One modeling formalism & simulator is not enough! - a perspective for computational biology based on james ii. In: Proceedings of the 1st FSMB Workshop, London. LNCS. Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  12. Himmelspach, J., Uhrmacher, A.: Plug’n simulate. In: Proceedings of the 40th Annual Simulation Symposium, pp. 137–143. IEEE Computer Society, Los Alamitos (to appear, 2007)

    Google Scholar 

  13. Ewald, R., Himmelspach, J., Uhrmacher, A.: An algorithm selection approach for simulation systems. In: Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2008) (to appear, 2008)

    Google Scholar 

  14. Gibson, M., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J. Chem. Physics 104, 1876–1889 (2000)

    Article  CAS  Google Scholar 

  15. Himmelspach, J., Uhrmacher, A.: The event queue problem and pdevs. In: Proceedings of the SpringSim 2007, DEVS Integrative M&S Symposium, SCS, pp. 257–264 (2007)

    Google Scholar 

  16. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  17. Gomes, C., Selman, B.: Algorithm portfolio design: Theory vs. practice. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI 1997), pp. 190–197. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  18. Leyton-Brown, K., Nudelman, E., Andrew, G., Mcfadden, J., Shoham, Y.: Boosting as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 899–903. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Houstis, E.N., Catlin, A., Rice, J., Verykios, V., Ramakrishnan, N., Houstis, C.: Pythia ii: A knowledge/database system for managing performance data and recommending scientific software. ACM Transactions on Mathematical Software 26(2), 227–253 (2000)

    Article  Google Scholar 

  20. Busch, H., Sandmann, W., Wolf, V.: A Numerical Aggregation Algorithm for the Enzyme-Catalyzed Substrate Conversion (2006)

    Google Scholar 

  21. Cai, X., Wang, X.: Stochastic modeling and simulation of gene networks - a review of the state-of-the-art research on stochastic simulations. Signal Processing Magazine, IEEE 24(1), 27–36 (2007)

    Article  CAS  Google Scholar 

  22. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm forchemically reacting systems. The Journal of Chemical Physics 121(9), 4059–4067 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Gillespie, D.: The chemical langevin equation. The Journal of Chemical Physics 113(1), 297–306 (2000)

    Article  CAS  Google Scholar 

  24. Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. The Journal of Chemical Physics 121(21), 10356–10364 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys. 123, 054104 (2005)

    Article  Google Scholar 

  26. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4) (January 2006)

    Google Scholar 

  27. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. The Journal of Chemical Physics 119, 12784–12794 (2003)

    Article  CAS  Google Scholar 

  28. Cai, X., Xu, Z.: K-leap method for accelerating stochastic simulation of coupled chemical reactions. The Journal of Chemical Physics 126, 4102 (2007)

    Google Scholar 

  29. EMBL-EBI: Biomodels database, 10 (accessed July 18, 2008), http://www.ebi.ac.uk/biomodels/

  30. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  Google Scholar 

  31. Marsaglia, G.: The Marsaglia random number CDROM including the Diehard battery of tests of randomness (1995), http://www.stat.fsu.edu/pub/diehard/

  32. Jenkins, B.: ISAAC, a fast cryptographic random number generator (1996), http://www.burtleburtle.net/bob/rand/isaacafa.html

  33. Hellekalek, P.: Good random number generators are (not so) easy to find. Math. Comput. Simul. 46(5-6), 485–505 (1998)

    Article  Google Scholar 

  34. Grassberger, P.: On correlations in “good” random number generators. Physics Letters A 181(1), 43–46 (1993)

    Article  Google Scholar 

  35. Matsumoto, M., Wada, I., Kuramoto, A., Ashihara, H.: Common defects in initialization of pseudorandom number generators. ACM Trans. Model. Comput. Simul. 17(4) (September 2007)

    Google Scholar 

  36. Marsaglia, G.: Seeds for random number generators. Commun. ACM 46(5), 90–93 (2003)

    Article  Google Scholar 

  37. Goh, R., Thng, I.: Mlist: An efficient pending event set structure for discrete event simulation. International Journal of Simulation - Systems, Science & Technology 4(5-6), 66–77 (2003)

    Google Scholar 

  38. Brown, R.: Calendar queues: a fast 0(1) priority queue implementation for the simulation event set problem. Commun. ACM 31(10), 1220–1227 (1988)

    Article  Google Scholar 

  39. Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computational problems. Science 275, 51–54 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC, Boca Raton (January 2007)

    Google Scholar 

  41. Pozo, R., Miller, B.: Java scimark, http://math.nist.gov/scimark2/

  42. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2005)

    Google Scholar 

  43. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20 (2004)

    Google Scholar 

  44. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeschke, M., Ewald, R. (2008). Large-Scale Design Space Exploration of SSA. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88562-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88561-0

  • Online ISBN: 978-3-540-88562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics