Skip to main content

Vertical Stratification of Composition, Density, and Inferred Magmatic Processes in Exposed Arc Crustal Sections

  • Chapter
  • First Online:

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Comparison of exposed arc crustal sections from four ancient magmatic arcs reveals a pattern of depth-specific processes that may be typical of arcs worldwide. These processes include (1) fractionation of mafic and ultramafic cumulates from a mafic parental magma in the uppermost mantle and lowermost crust, (2) subsolidus transformation of mafic plutonic rocks into dense garnet-bearing assemblages in the region of the Moho in thick arc sections (>30 km depth) by isobaric cooling and/or partial melting, (3) dehydration melting of amphibolitized basalt and gabbro (including pre-existing oceanic basement) in the deep to mid crust (15–25 km depth), (4) mingling/mixing of differentiated magmas produced from processes 1 and 3 with mafic mantle-derived magmas in the lower mid crust (15–25 km depth), and (5) increasing homogenization of magmas in mid to upper crustal levels (<20 km depth).

Individual arcs will vary given their unique tectonic settings and petrogenesis. However, these processes may provide a general framework that can be used as an overlay for interpretation of geophysical observations in active arcs and for petrogenetic studies of arc volcanic rocks. The four sections used in the study (correlated to observed processes as listed in the first paragraph) include the Jurassic Talkeetna arc exposed in Alaska (processes 1,2,4,5), the Cretaceous Kohistan arc of northern Pakistan (processes 1,2,3,4,5), the Jurassic Bonanza arc exposed on the west coast of Vancouver Island (processes 3,4,5), and Cretaceous North Cascades crystalline core (southern Coast Plutonic Complex) (processes 3,4,5). Comparable levels of each of these arcs are strikingly similar, both physically and geochemically.

The broader issues of density and geochemical stratification of arcs, as well as their bulk composition and accretion, are critical to an understanding of the growth and compositional evolution of continental crust. The magmas produced by processes (1) and (3) produce the unsubductable nucleus of continental crust. The residual materials of processes (1) and (3), cumulates and restites, produce dense materials that must be recycled back into the mantle. Geochemical evidence for crustal foundering is apparent in the accreted Kohistan arc and Talkeetna arc. In Talkeetna, the paleo-Moho is an abrupt transition between gabbroic rocks (at the garnet-in isograd) and ultramafic rocks. Delamination such as this, plus substantial internal distillation, can result in a more felsic residuum comparable to continental crust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amato JM, Rioux ME, Kelemen PB, Gehrels GE, Clift PD, Pavlis TL, Draut AE (2007) U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: implications for the age of magmatism and inheritance in the Talkeetna arc. In: Ridgway KD, Trop JM, Glen JMG, O’Neill JM (eds) Tectonic growth of a collisional continental margin: crustal evolution of southern Alaska. Geological Society of Americal Special Paper 431:253–271

    Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Armstrong RLA (1988) Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera. Geol Soc Am Spec Pap 218:55–91

    Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3–4):197–213

    Article  Google Scholar 

  • Behn MD, Kelemen PB (2006) Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res Solid Earth, 111, B11207, doi:10.1029/2006JB004327

  • Bouilhol P, Burg J-P, Bodinier JL, Schmidt MW, Dawood H, Hussain S (2009) Magma and fluid percolation in arc to forearc mantle: evidence from Sapat (Kohistan, Northern Pakistan). Lithos 107:17–37

    Article  Google Scholar 

  • Burg J-P (2011) The Asia‐Kohistan‐India collision. Review and discussion. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Burg J-P, Bodinier J-L, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10(2):74–80

    Article  Google Scholar 

  • Burg J-P, Arbaret L, Chaudhry NM, Dawood H, Hussain S, Zeilinger G (2005) Shear strain localization from the upper mantle to the middle crust of the Kohistan arc (Pakistan). In: Bruhn D, Burlini L (eds) High-strain zones: structure and physical properties, vol 245. Geological Society of London, Special Publications, London, pp 35–38

    Google Scholar 

  • Burg J-P, Jagoutz O, Dawood H, Hussain SS (2006) Precollision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25, TC5005, doi:10.1029/2005TC001835

    Article  Google Scholar 

  • Burns LE (1985) The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22:1020–1038

    Article  Google Scholar 

  • Calvert AJ (2011) The seismic structure of island arc crust. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Calvert AJ, Klemperer SL, Takahashi N, Kerr BC (2008) Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J Geophys Res Solid Earth 113, B01406, doi:10.1029/2007JB004939

  • Clift PD, Draut AE, Kelemen PB, Blusztajn J, Greene A (2005a) Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: the Jurassic Talkeetna Volcanic Formation, south-central Alaska (vol 117, pg 902, 2005). Geol Soc Am Bull 117(9–10):1368–1373

    Google Scholar 

  • Clift PD, Pavlis T, DeBari SM, Draut AE, Rioux M, Kelemen PB (2005b) Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology 33(11):881–884

    Article  Google Scholar 

  • Crawford WC, Wiens DA, Dorman LM, Webb SC (2003) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J Geophys Res-Solid Earth 108(B4):2195, doi:10.1029/2001JB001435

    Article  Google Scholar 

  • Dawes RL (1993) Mid-crustal, Late Cretaceous plutons of the North Cascades: petrogenesis and implications for the growth of continental crust. Ph.D. Thesis, University of Washington, Seattle, 273 pages

    Google Scholar 

  • DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94(B4):4373–4391

    Article  Google Scholar 

  • DeBari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103:37–47

    Article  Google Scholar 

  • DeBari SM, Miller RB, Paterson SR (1998) Genesis of tonalitic plutons in the Cretaceous magmatic arc of the North Cascades: mixing of mantle-derived mafic magmas and melts of a garnet-bearing lower crust. Geol Soc Am Abstr Programs 30(7):257–258

    Google Scholar 

  • DeBari SM, Anderson RG, Mortensen JK (1999) Correlation among lower to upper crustal components in an island arc: the Jurassic Bonanza arc, Vancouver Island, Canada. Can J Earth Sci 36(8):1371–1413

    Article  Google Scholar 

  • Dhuime B, Bosch D, Bodinier JL, Garrido CJ, Bruguier O, Hussain SS, Dawood H (2007) Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett 261(1–2):179–200

    Article  Google Scholar 

  • Dhuime B, Bosch D, Garrido CJ, Bodinier JL, Bruguier O, Hussain SS, Dawood H (2009) Geochemical architecture of the lower- to middle-crustal section of a paleo-island arc (Kohistan complex, Jijal-Kamila area, Northern Pakistan): implications for the evolution of an oceanic subduction zone. J Petrol 50(3):531–569

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL, Burg J-P, Zeilinger G, Hussain SS, Dawood H, Chaudhry MN, Gervilla F (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47(10):1873–1914

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL, Dhuime B, Bosch D, Chanefo I, Bruguier O, Hussain SS, Dawood H, Burg J-P (2007) Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal differentiation of island arcs: evidence from the Jijal complex (Kohistan complex, northern Pakistan). Geology 35(8):683–686

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics, vol 16. Springer, Berlin, p 390

    Book  Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47(6):1051–1093

    Article  Google Scholar 

  • Greene AR, Scoates JS, Weiss D, Nixon GT, Kieffer B (2009) Melting history and magmatic evolution of basalts and picrites from the accreted Wrangellia oceanic plateau, Vancouver Island, Canada. J Petrol 50(3):467–505

    Article  Google Scholar 

  • Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2008) Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res-Solid Earth 113, B03204, doi:10.1029/2007JB005208

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Iwasaki T, Kato W, Moriya T, Hasemi A, Umimo N, Okada T, Miyashita K, Mizogami T, Takeda T, Sekine S, Matsushima T, Tashiro K, Miyamachi H (2001) Extensional structure in northern Honshu arc as inferred from seismic refraction/wide-angle reflection profiling. Geophys Res Lett 12:2329–2332

    Article  Google Scholar 

  • Jagoutz O (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381

    Article  Google Scholar 

  • Jagoutz O, Muntener O, Burg J-P, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342

    Article  Google Scholar 

  • Jagoutz O, Muntener O, Burg J-P, Ulmer P, Pettke T, Burg J-P, Dawood H, Hussain S (2007) Petrology and Mineral Chemistry of Lower Crustal Intrusions: the Chilas Complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953

    Google Scholar 

  • Jagoutz O, Burg J-P, Hussain S, Dawood H, Pettke T, Iizuka T, Maruyama S (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contrib Mineral Petrol 158:739–755

    Google Scholar 

  • Jan MQ (1988) Geochemistry of amphibolites from the southern part of the Kohistan arc, N-Pakistan. Mineralog Mag 52(365):147–159

    Article  Google Scholar 

  • Jan MQ, Howie RA (1981) The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. J Petrol 22(1):85–126

    Article  Google Scholar 

  • Johnsen M (2007) Geochemical composition of the western Talkeetna island arc crustal section, lower Cook Inlet region, Alaska: implications for crustal growth along continental margins. M.S. Thesis, Western Washington University, Bellingham, WA

    Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106(B4):6423–6446

    Article  Google Scholar 

  • Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford, pp 593–659

    Google Scholar 

  • Khan MA, Jan MQ, Windley BF, Tarney J, Thirwall MF (1989) The Chilas mafic-ultramafic igneous complex: the root of the Kohistan island arc in the Himalaya of northern Pakistan. Geol Soc Am Spec Pap 232:75–93

    Google Scholar 

  • Khan MA, Jan MQ, Weaver BL (1993) Evolution of the lower arc crust in Kohistan, N. Pakistan: temporal arc magmatism through early, mature and intra-arc rift stages. In: Treloar PJ, Searle MP (eds) Himalayan tectonics, vol 74. Geological Society of London, Special Publications, London, pp 123–138

    Google Scholar 

  • Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L (2009) Did the Kohistan-Ladakh island arc collide first with India?, GSA Bulletin, v. 121, no. 3/4, doi:10.1130/B26348.1

  • Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35(11):1031–1034

    Article  Google Scholar 

  • Matzel JEP, Bowring SA, Miller RB (2004) Protolith age of the Swakane Gneiss, North Cascades, Washington: evidence of rapid underthrusting of sediments beneath an arc. Tectonics 23(6):TC6009, doi:10.1029/2003TC001577

    Article  Google Scholar 

  • Mehl L, Hacker BR, Hirth G, Kelemen PB (2003) Arc-parallel flow within the mantle wedge: evidence from the accreted Talkeetna arc, south central Alaska. J Geophys Res-Solid Earth 108(B8):2375, doi:10.1029/2002JB002233

    Article  Google Scholar 

  • Miller RB, Paterson SR (2001) Construction of mid-crustal sheeted plutons: examples from the north Cascades, Washington. Geol Soc Am Bull 113(11):1423–1442

    Article  Google Scholar 

  • Miller DJ, Loucks RR, Ashraf M (1991) Platinum-group element mineralization in the Jijal layered ultramafic-mafic complex, Pakistani Himalayas. Econ Geol 86:1093–1102

    Article  Google Scholar 

  • Miller RB, Paterson SR, Matzel JEP (2009) Plutonism at different crustal levels: insights from the ~5–40 km (paleodepth) North Cascades crustal section. In: Miller RB, Snoke AW (eds) Crustal cross sections from the western North America Cordillera and elsewhere: implications for tectonic and geologic processes. Geological Society of America Special Paper 456, pp 125–149

    Google Scholar 

  • Monger JWH, van der Heyden P, Journeay JM, Evenchick CE, Mahoney JB (1994) Jurassic-Cretaceous basins along the Canadian Coast Belt: their bearing on pre-mid-Cretaceous sinistral displacements. Geology 22(2):175–178

    Article  Google Scholar 

  • Muller JE, Northcote KE, Carlisle D (1974) Geology and mineral deposits of Alert Bay – Cape Scott map area. Vancouver Island, British Columbia. Geological Survey of Canada, Paper 74–8, p 77

    Google Scholar 

  • Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658

    Article  Google Scholar 

  • Nakanishi A, Kurashimo E, Tatsumi Y, Yamaguchi H, Miura S, Kodaira S, Obana K, Takahashi N, Tsuru T, Kaneda Y, Iwasaki T, Hirata N (2009) Crustal evolution of the southwestern Kuril arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure. Tectonophysics 472(1–4):105–123

    Article  Google Scholar 

  • Nishimoto S, Ishikawa M, Arima M, Yoshida T (2005) Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics 396(3–4):245–259

    Article  Google Scholar 

  • Parent L (1999) Petrology and petrogenesis of the Cardinal Peak Pluton, North Cascades, Washington. Geology Department, San Jose State University, San Jose, CA, 130 pages

    Google Scholar 

  • Parsons T, Trehu AM, Luetgert JH, Miller K, Kilbride F, Wells RE, Fisher MA, Flueh E, St Brink U, Christensen NI (1998) A new view into the Cascadia subduction zone and volcanic arc: implications for earthquake hazards along the Washington margin. Geology 26(3):199–202

    Article  Google Scholar 

  • Petterson MG, Treloar PJ (2004) Volcanostratigraphy of arc volcanic sequences in the Kohistan arc, North Pakistan: volcanism within island arc, back-arc-basin, and intra-continental tectonic settings. J Volcanol Geoth Res 130(1–2):147–178

    Article  Google Scholar 

  • Petterson MG, Windley BF (1985) Rb-Sr dating of the Kohistan arc-batholith in the trans-Himalaya of North-Pakistan, and tectonic implications. Earth Planet Sci Lett 74(1):45–57

    Article  Google Scholar 

  • Petterson MG, Windley BF (1991) Changing source regions of magmas and crustal growth in the Trans-Himalayas: evidence from the Chalt volcanics and Kohistan batholith, Kohistan, northern Pakistan. Earth Planet Sci Lett 102:326–341

    Article  Google Scholar 

  • Petterson MG, Crawford MB, Windley BF (1993) Petrogenetic implications of neodymium isotope data from the Kohistan batholith, North Pakistan. J Geol Soc Lond 150:125–129

    Article  Google Scholar 

  • Plafker G, Nokleberg WJ, Lull JS (1989) Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the trans-Alaska crustal transect in the Chugach Mountains and southern Copper River basin, Alaska. J Geophys Res 94(B4):4255–4295

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Reed BL, Lanphere MA (1973) Alaska-Aleutian Range batholith: geochronology, chemistry, and relation to circum-Pacific plutonism. Geol Soc Am Bull 84:2583–2610

    Article  Google Scholar 

  • Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology 27(2):139–142

    Article  Google Scholar 

  • Rioux M, Hacker B, Mattinson J (2007) Magmatic development of an intra-oceanic arc: high-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Geol Soc Am Bull 119(9–10):1168–1184

    Article  Google Scholar 

  • Rioux M, Mattinson J, Hacker B, Kelemen P, Blusztajn J, Hanghoj K, Gehrels G (2010) Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak island, Alaska: an analogue for low-velocity middle crust in modern arcs. Tectonics 29:TC3001, doi:10.1029/2009TC002541

    Article  Google Scholar 

  • Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112:101–118

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford, pp 1–70

    Chapter  Google Scholar 

  • Schaltegger U, Zeilinger G, Frank M, Burg J-P (2002) Multiple mantle sources during island arc magmatism: U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14(6):461–468

    Article  Google Scholar 

  • Schaltegger U, Frank M, Burg J-P (2003) A 120 million years record of magmatism and crustal melting in the Kohistan batholith. Geophysical Research Abstracts, EGS-AGU-EUG Joint Assembly 5, Abstract 06816

    Google Scholar 

  • Shillington DJ, Van Avendonk HJA, Holbrook WS, Kelemen PB, Hornbach MJ (2004) Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem Geophys Geosyst 5:Q10006

    Article  Google Scholar 

  • Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science 272:390–392

    Article  Google Scholar 

  • Tabor RW, Haugerud RA, Miller RB (1989) Overview of the geology of the North Cascades. In: International Geologic Congress Trip T307. American Geophysical Union, p 62

    Google Scholar 

  • Takahashi N, Kodaira S, Klemperer SL, Tatsumi Y, Kaneda Y, Suyehiro K (2007) Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35(3):203–206

    Article  Google Scholar 

  • Tatsumi Y (2005) The subduction factory: how it operates in the evolving Earth. GSA Today 15(7):4–10

    Article  Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res-Solid Earth 113, B02203, doi:10.1029/2007JB005121

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Trop JM, Szuch DA, Rioux M, Blodgett RB (2005) Sedimentology and provenance of the Upper Jurassic Naknek Formation, Talkeetna Mountains, Alaska: bearings on the accretionary tectonic history of the Wrangellia composite terrane. Geol Soc Am Bull 117(5/6):570–588

    Article  Google Scholar 

  • Umhoefer PJ, Miller RB (1996) Mid-Cretaceous thrusting in the southern Coast Belt, British Columbia and Washington, after strike-slip fault reconstruction. Tectonics 15(3):545–565

    Article  Google Scholar 

  • Valley PM, Whitney DL, Paterson SR, Miller RB, Alsleben H (2003) Metamorphism of the deepest exposed arc rocks in the Cretaceous to Paleogene Cascades belt, Washington: evidence for large-scale vertical motion in a continental arc. J Metamorph Geol 21(2):203–220

    Article  Google Scholar 

  • Whitney DL, Miller RB, Paterson SR (1999) P-T-t evidence for mechanisms of vertical tectonic motion in a contractional orogen: north-western US and Canadian Cordillera. J Metamorph Geol 17(1):75–90

    Article  Google Scholar 

  • Yamamoto H (1993) Contrasting metamorphic P-T-time paths of the Kohistan granulites and tectonics of the western Himalayas, Journal of the Geological Society, London, v. 150, p. 843–856

    Google Scholar 

  • Yamamoto H, Nakamura E (2000) Timing of magmatic and metamorphic events in the Jijal complex of the Kohistan arc deduced from Sm-Nd dating of mafic granulites. In: Khan MA, Treloar PJ, Searle MP, Jan MQ (eds) Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya, vol 170. Geological Society of London, Special Publications, London, pp 313–319

    Google Scholar 

  • Yamamoto H, Yoshino T (1998) Superposition of replacements in the mafic granulites of the Jijal complex of the Kohistan arc, northern Pakistan: dehydration and rehydration within deep arc crust. Lithos 43(4):219–234

    Article  Google Scholar 

  • Yoshino T, Okudaira T (2004) Crustal growth by magmatic accretion constrained by metamorphic P-T paths and thermal models of the Kohistan arc, NW Himalayas. J Petrol 45(11):2287–2302

    Article  Google Scholar 

  • Yoshino T, Yamamoto H, Okudaira T, Toriumi M (1998) Crustal thickening of the lower crust of the Kohistan arc (N. Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. J Metamorph Geol 16(6):729–748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. DeBari .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeBari, S.M., Greene, A.R. (2011). Vertical Stratification of Composition, Density, and Inferred Magmatic Processes in Exposed Arc Crustal Sections. In: Arc-Continent Collision. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_5

Download citation

Publish with us

Policies and ethics