Skip to main content

The Seismic Structure of Island Arc Crust

  • Chapter
  • First Online:

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Intraoceanic island arcs are considered to be fundamental building blocks of continental crust that are accreted during arc–continent collision. P wave velocity models derived from wide-angle seismic surveys can constrain the thickness and composition of arc crust. The variations of P wave velocity with depth of the Aleutian, Izu-Bonin-Mariana, Lesser Antilles, Solomon, South Sandwich, and Tonga island arcs are compared, and the unextended Aleutian arc is contrasted in detail with the Izu-Bonin-Mariana arc-back-arc system, which has been variably subject to extension and arc rifting. The Aleutian arc is interpreted to be 35 km thick along much of its eastern section, while close to the volcanic line the Izu arc is 26–35 km thick, the Bonin arc 10–22 km thick, and the Mariana arc 16–24 km thick, with these variations in thickness primarily related to the amount of extension that has affected the different segments of the arc. Both wide-angle refraction and normal incidence reflection surveys indicate that the crust–mantle transition can extend 4–10 km beneath the top-Moho reflector used to determine most crustal thicknesses. At depths greater than 8–10 km, i.e., a confining pressure of ~0.2 GPa, all surveyed island arcs exhibit higher seismic velocities than continental crust, and are thus on average more mafic. However, at depths less than 8–10 km, P wave velocities in island arcs generally fall within the broad range of values corresponding to continental crust. These upper crustal velocities are consistent with the presence of tonalitic rocks, but at shallow depths felsic rocks cannot be readily discriminated from more mafic rocks with elevated porosity. Nevertheless lateral variations in seismic velocity along the Izu-Bonin arc on the scale of ~50 km can be correlated with the chemistry of arc volcanoes, suggesting a link between seismic velocity, crustal composition, and the magmatic evolution of the arc. Prior to arc–continent collision, sedimentary rocks derived from the approaching continent can accumulate across the forearc and in the back-arc basin, and may reach thicknesses as great as 12 km.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amante C, Eakins BW (2009) Arc-minute global relief model: procedures, data sources and analysis. Technical memorandum NESDIS NGDC-24, NOAA, Boulder

    Google Scholar 

  • Arai T (1987) Tectonics of Tanzawa mountains: constraints from metamorphic petrology. J Geol Soc Jpn 93:185–200

    Article  Google Scholar 

  • Bard JP, Maluski P, Matte P et al (1980) The Kohistan sequence, crust and mantle of an obducted island arc. Geol Bull Univ Peshawar 13:87–94

    Google Scholar 

  • Behn MD, Keleman PB (2003) Relationship between P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem Geophys Geosyst. doi:10.1029/2002GC000393

    Google Scholar 

  • Behn MD, Keleman PB (2006) Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res. doi:10.1029/2006JB004327

    Google Scholar 

  • Bibee LD, Shor GG Jr, Lu RS (1980) Inter-arc spreading in the Mariana Trough. Mar Geol 35:183–197

    Article  Google Scholar 

  • Birch F (1943) Elasticity of igneous rocks at high temperatures and pressures. Geol Soc Am Bull 54:263–286

    Google Scholar 

  • Bouysse P (1988) Opening of the Grenada back-arc basin and evolution of the Caribbean Plate during the Mesozoic and early Paleogene. Tectonophysics 149:121–143

    Article  Google Scholar 

  • Boynton CH, Westbrook GK, Bott, MHP et al (1979) A seismic refraction investigation of crustal structure beneath the Lesser Antilles island arc. Geophys JR astr Soc 58:371–393

    Google Scholar 

  • Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95:2081–2092

    Article  Google Scholar 

  • Brugier N, Larter R (2001) Crustal structure and rate of growth of the South Sandwich arc from wide-angle seismic data. Eur Union Geosc Prog Abs 392–393

    Google Scholar 

  • Burke K (1988) Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci 16:201–230

    Article  Google Scholar 

  • Calvert AJ, Klemperer SL, Takahashi N et al (2008) Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J Geophys Res. doi:10.1029/2007JB004939

    Google Scholar 

  • Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Res 48:99–156

    Article  Google Scholar 

  • Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low velocity zones. J Geophys Res 84:6849–6857

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust. J Geophs Res 100:9761–9788

    Article  Google Scholar 

  • Christeson G, Mann P, Escalona A et al (2008) Crustal structure of the Caribbean – northeastern South America arc-continent collision zone. J Geophys Res. doi:10.1029/2007JB005373

    Google Scholar 

  • Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys. doi:10.1029/2003RG000127

    Google Scholar 

  • Cook FA, Clowes RM, Snyder DB et al (2004) Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling. Tectonics. doi:10.1029:2002TC001412

    Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Article  Google Scholar 

  • Crawford WC, Hidebrand JA, Dorman LM, Webb SC, Wiens DA (2002) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J Geophys Res. doi:10.1029/2001JB001435

    Google Scholar 

  • d’Ars JB, Jaupart C, Sparks RSJ (1995) Distribution of volcanoes in active margins. J Geophys Res 100:20421–20432

    Article  Google Scholar 

  • DeMets C, Dixon TH (1999) New kinematic models for Pacific-North America plate motion from 3 Ma to present: I. Evidence for steady motion and biases in the NUVEL-1A model. Geophys Res Lett 26:1921–1924

    Article  Google Scholar 

  • Dimalanta C, Taira A, Yumul GP Jr et al (2002) New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet Sci Lett 202:105–115

    Article  Google Scholar 

  • Fliedner MM, Klemperer SK (1999) Structure of an island-arc: wide-angle studies in the eastern Aleutian Islands, Alaska. J Geophys Res 104:10667–10694

    Article  Google Scholar 

  • Fryer P (1995) Geology of the Mariana Trough. In: Taylor B (ed) Back-arc basins: tectonics and magmatism. Plenum, New York

    Google Scholar 

  • Fujie G, Ito A, Kodaira S et al (2006) Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a travel time mapping method. Phys Earth Planet Int 157:72–85

    Article  Google Scholar 

  • Garrido CJ, Bodinier J-L, Burg J-P et al (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47:1873–1914

    Article  Google Scholar 

  • Geist EL, Childs JR, Scholl DW (1988) The origin of summit basins of the Aleutian Ridge: implications for block rotation of an arc massif. Tectonics 7:327–342

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin

    Book  Google Scholar 

  • Gorshkov GS (1970) Volcanism and the upper mantle. Plenum, New York

    Book  Google Scholar 

  • Grow JA (1973) Crustal and upper mantle structure of the central Aleutian arc. Geol Soc Am 84:2169–2192

    Article  Google Scholar 

  • Hoffman PF (1989) Precambrian geology and tectonic history of North America. In: Bally AW, Palmer PR (eds) The Geology of North America: an Overview, vol A. Geol Soc Am, Boulder

    Google Scholar 

  • Holbrook WS, Lizarralde D, McGeary S et al (1999) Structure and composition of the Aleutian island arc and implications for continental growth. Geology 27:31–34

    Article  Google Scholar 

  • Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res 97:6553–6562

    Article  Google Scholar 

  • Hole JA, Zelt BC (1995) 3-D finite-difference reflection travel times. Geophys J Int 121:427–434

    Article  Google Scholar 

  • Hussong DM, Uyeda S (1981) Tectonic processes and the history of the Mariana arc, a synthesis of the results of Deep Sea Drilling Project Leg 60. In: Hussong DM (ed) Initial Reports of the Deep Sea Drilling Project, Vol 60. Ocean Drilling Program, College Station

    Google Scholar 

  • Hyndman RD, Shearer PM (1989) Water in the lower continental crust – modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365

    Article  Google Scholar 

  • Ishizuka O, Kimura J, Li YB et al (2006) Early stages in the evolution of Izu-Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250:385–401

    Article  Google Scholar 

  • Ito A, Fujie G, Kodaira S et al (2005) Bending of the subducting oceanic plate and its implication for rupture propagation of large interplate earthquakes off Miyagi, Japan, in the Japan trench subduction zone. Geophys Res Lett. doi:10.1029/2004GL022307

    Google Scholar 

  • Iturrino GJ, Christensen NI, Kirby S, Salisbury MH (1991) Seismic velocities and elastic properties of oceanic gabbroic rocks from Hole 735B. Proc Ocean Drill Program Sci Results 118:227–244

    Google Scholar 

  • Iturrino GJ, Miller DJ, Christensen NI (1996) Velocity behavior of lower crustal and upper mantle rocks from a fast-spreading ridge at Hess Deep. Proc Ocean Drill Program Sci Results 147:417–440

    Google Scholar 

  • Jacob KH, Hamada K (1972) The upper mantle beneath the Aleutian island arc from pure-path Rayleigh-wave dispersion data. Bull Seismol Soc Am 62:1439–1454

    Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  • Karig DE (1970) Ridges and basins of the Tonga-Kermadec island arc system. J Geophys Res 75:239–254

    Article  Google Scholar 

  • Kawate S, Arima M (1998) Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic crust of the Izu-Bonin-Mariana arc. Island Arc 7:342–358

    Article  Google Scholar 

  • Kern H (1978) The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics 44:185–203

    Article  Google Scholar 

  • Kitamura K, Ishikawa M, Arima M (2003) Petrological model of the northern Izu-Bonin-Mariana arc crust: constraints from high pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics 371:213–221

    Article  Google Scholar 

  • Kobayashi KS, Kasuga S, Kl O (1995) Shikoku Basin and its margins. In: Taylor B (ed) Back-arc basins: tectonics and magmatism. Plenum, New York

    Google Scholar 

  • Kodaira S, Sato T, Takahashi N et al (2007a) Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res. doi:10.1029/2006JB004593

    Google Scholar 

  • Kodaira A, Sato T, Takahashi N et al (2007b) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–1034

    Article  Google Scholar 

  • Kono Y, Ishikawa M, Harigane Y et al (2009) P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: implications for seismic Moho discontinuity attributed to abundant garnet. Tectonophysics 467:44–54

    Article  Google Scholar 

  • Korenaga J, Kelemen PB, Holbrook WS (2002) Methods for resolving the origin of large igneous provinces from crustal seismology. J Geophys Res. doi:10.1029/2001JB001030

    Google Scholar 

  • Kusznir, NJ, Park RG (1987) The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness. In: Coward MP, Dewey JF, Hancock, PL (eds) Continental extensional tectonics. Geol Soc, London.

    Google Scholar 

  • Larner K, Chambers YM et al (1983) Coherent noise in marine seismic data. Geophysics 48:854–886

    Article  Google Scholar 

  • Leat PT, Larter RD (2003) Intra-oceanic subduction systems: introduction. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes, vol 219, Geol Soc Lon Spec Pub., pp 1–17

    Google Scholar 

  • Lizarralde D, Holbrook WS, McGeary S et al (2002) Crustal structure of a volcanic arc, wide-angle results from the western Alaska Peninsula. J Geophys Res. doi:10.1029/2001JB000230

    Google Scholar 

  • Malfait BT, Dinkelman MG (1972) Circum-Caribbean tectonic and igneous activity and the evolution of the Caribbean plate. Geol Soc Am Bull 83:251–271

    Article  Google Scholar 

  • Martinez F, Taylor B (2006) Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In: Christie DM et al (eds) Back-arc spreading systems: Geological, biological, chemical and physical interactions. Am Geophys Union, Washington

    Google Scholar 

  • Miller DJ, Christensen NI (1994) Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J Geophys Res 99:11623–11642

    Article  Google Scholar 

  • Miura S, Suyehiro K, Takahashi N et al (2004) Seismological structure and implications of collision between the Ontong Java plateau and Solomon island arc from ocean bottom seismometer-airgun data. Tectonophysics 389:191–220

    Article  Google Scholar 

  • Molnar P, Atwater T (1978) Interarc spreading and Cordilleran tectonics as alternatives related to the age of subducted oceanic lithosphere. Earth Planet Sci Lett 41:330–340

    Article  Google Scholar 

  • Murauchi S, Den N, Asano S et al (1968) Crustal structure of the Philippine Sea. J Geophys Res 73:3143–3171.

    Google Scholar 

  • Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7:359–373

    Article  Google Scholar 

  • Nishizawa A, Kaneda K, Katagiri Y et al (2007) Variation in crustal structure along the Kyushu-Palau Ridge at 15–21oN on the Philippine Sea plate based on seismic refraction profiles. Earth Planets Space 59:e17–e20

    Google Scholar 

  • Nitsuma N (1989) Collision tectonics in the South Fossa Magna, Central Japan. Mod Geol 14:3–18

    Google Scholar 

  • Oakley AJ, Taylor B, Moore GF, Gooliffe A (2009) Sedimentary, volcanic, and tectonic processes of the central Mariana Arc: Mariana Trough back-arc basin formation and the West Mariana Ridge. Geochem Geophys Geosyst. doi:10.1029/2008GC002312

    Google Scholar 

  • Okino K, Shimakawa Y, Nagaoka S (1994) Evolution of the Shikoku Basin. J Geomagn Geoelectr 46:463–479

    Article  Google Scholar 

  • Okino K, Ohara Y, Kasuga S et al (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290

    Article  Google Scholar 

  • Plafker G, Berg HC (1994) Overview of the geology and tectonic evolution of Alaska. In: Plafker G, Berg HC (eds) The Geology of North America, vol G-1, The Geology of Alaska. Geol Soc Am, Boulder

    Google Scholar 

  • Plafker G, Moore JC, Winkler GR (1994) Geology of the southern Alaska margin. In: Plafker G, Berg HC (eds) The Geology of North America, vol G-1, The Geology of Alaska. Geol Soc Am, Boulder

    Google Scholar 

  • Rudnick LR, Fountain MD (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Sato T, Kodaira S, Takahashi N et al (2009) Amplitude modeling of the seismic reflectors in the crust-mantle transition layer beneath the volcanic front along the northern Izu-Bonin island arc. Geochem Geophys Geosyst. doi:10.1029/2008GC001990

    Google Scholar 

  • Scholl DW, Stevenson AJ, Mueller S et al (1992) Exploring the notion that southeast-Asian-type escape tectonics and trench clogging are involved in regional-scale deformation of Alaska and the formation of the Aleutian-Bering sea region. In: Flower M, McCabe R, Hilde T (eds) Southeast Asia structure, tectonics and magmatism, Proc Geod Res Inst Symp. Texas A&M Univ, College Station

    Google Scholar 

  • Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL and geological data. J Geophys Res 98:17941–17948

    Article  Google Scholar 

  • Shillington DJ, van Avendonk HJA, Holbrook WS et al (2004) Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem Geophys Geosyst. doi:10.1029/2004GC000715

    Google Scholar 

  • Shor GG Jr, Kirk HK, Menard HW (1971) Crustal structure of the Melanesian area. J Geophys Res 76:2562–2586

    Article  Google Scholar 

  • Speed RC, Walker JA (1991) Oceanic crust of the Grenada basin in the southern Lesser Antilles arc platform. J Geophys Res 96:3835–3851

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys. doi:10.1029/2001RG000108

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Article  Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler JM (ed) Inside the subduction factory. Am Geophys Union, Washington

    Google Scholar 

  • Suyehiro K, Takahashi N, Ariie Y et al (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an island arc. Science 272:390–392

    Article  Google Scholar 

  • Takahashi N, Suyehiro K, Shinohara M (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc 7:383–394

    Article  Google Scholar 

  • Takahashi N, Kodaira S, Klemperer S et al (2007) Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35:203–206

    Article  Google Scholar 

  • Takahashi N, Kodaira S, Tatsumi Y et al (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–back-arc system. J Geophys Res. doi:10.1029/2007JB005120

    Google Scholar 

  • Takahashi N, Kodaira S, Tatsumi Y et al (2009) Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochem Geophys Geosyst. doi:10.1029/2008GC002146

    Google Scholar 

  • Tani K, Dunkley DJ, Kimura J-I et al (2010) Syncollisional rapid granitic magma formation in an arc-arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geology 38:215–218

    Article  Google Scholar 

  • Tatsumi Y, Tani K, Kogiso T et al (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Arc evolution, continental crust formation, and crust-mantle transformation. J Geophys Res. doi:10.1029/2007JB005121

    Google Scholar 

  • Taylor B (1992) Rifting and volcano-tectonic evolution of the Izu-Bonin-Mariana arc. In: Maddox E (ed) Proceedings of the ocean drilling program, scientific results, Vol 126. Ocean Drilling Program, College Station

    Google Scholar 

  • Taylor B, Karner GD (1983) On the evolution of marginal basins. Rev Geophys Space Phys 21:1727–1741

    Article  Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:47–56

    Article  Google Scholar 

  • Van Avendonk HJA, Shillington DJ, Holbrook WS, Hornbach MJ (2004) Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set. Geochem Geophys Geosyst. doi:10.1029/2003GC000664

    Google Scholar 

  • Von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Article  Google Scholar 

  • White RS (1984) Atlantic oceanic crust: Seismic structure of a slow-spreading ridge. In: Gass IG (ed) Ophiolites and oceanic lithosphere, vol 13. Geol Soc Lon, London

    Google Scholar 

  • Wiebenga WA (1973) Crustal structure of the New Britain-New Zealand region. In: Coleman PJ (ed) The Western Pacific. Western Australia University Press, Perth

    Google Scholar 

  • Yamamoto Y, Kawakami S (2005) Rapid tectonics of the late Miocene Boso accretionary prism related to the Izu-Bonin arc collision. Island Arc 14:178–198

    Article  Google Scholar 

  • Zelt CA, Barton PJ (1998) 3-D seismic refraction tomography: a comparison of two methods applied to data from the Faroes Basin. Geophys J Int 103:7187–7210

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

Download references

Acknowledgements

I am very grateful to those who generously contributed seismic velocity models for this paper: G. Christeson, W. Crawford, S. Holbrook, S. Kodaira, E. Kurashimo, R. Larter, D. Lizarralde, S. Miura, A. Nishizawa, D. Shillington, N. Takahashi, and H. van Avendonk. Constructive reviews by Steve Holbrook and an anonymous reviewer plus comments from Sue DeBari improved the final manuscript. The bathymetry data for all the maps were obtained from the National Oceanic and Atmospheric Administration ETOPO1 global relief model (Amante and Eakins 2009). This project was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Calvert .

Appendix

Appendix

Table 4.1 lists the sections of the various wide-angle velocity models that were laterally averaged to create the 1D velocity-depth functions shown in Figs. 4.13 and 4.14. The x-coordinates correspond to those used originally in the publications cited. A maximum depth, below which the velocities are not considered well constrained, was chosen for each velocity function, and velocity functions are only displayed above these depths.

Fig. 4.15
figure 15

Comparison of the average seismic velocity functions for island arcs with that of continental crust from Christensen and Mooney (1995). The different depth datum levels are indicated. Note that the range of data included in the island arc average decreases below 30 km depth, because there are few velocity models that extend this deep.

Table 4.1 Locations of derived 1D velocity-depth functions

Representative 1D velocity depth functions for island arc crust were calculated by averaging the sections of the 2D arc velocity models listed in Table 4.1 (but excluding the continental part of Aleutian line A3) using three difference reference datums: mean sea level, the seafloor (taken to be the 1.52 km s−1 isovelocity contour), and the top of the igneous crust (Fig. 4.15). In many island arc settings, the top of the igneous crust is not well defined due to low velocity, high porosity volcanic rocks and intrusions into the overlying sedimentary section; so the 3.5 km s−1 contour was used to approximate this boundary. To obtain a 1D velocity model for a particular reference datum, e.g. the seafloor, each velocity model was depth-shifted so that the velocity value immediately below the datum was aligned at zero across the 2D model. This results in higher velocities at zero depth than the selected datum value due to discretization of the velocity models. All the 2D models were then averaged. The contribution of a particular velocity model to the average velocity functions depends on the length of the model in Table 4.1. Thus the long strike lines along the Aleutian and Izu, Bonin and Mariana contribute more to the average than relatively short dip lines, such as that across South Sandwich arc.

Table 4.2 Reference 1D velocity-depth functions for island arcs (km s−1)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calvert, A.J. (2011). The Seismic Structure of Island Arc Crust. In: Arc-Continent Collision. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_4

Download citation

Publish with us

Policies and ethics