Skip to main content

Paleoclimate and Evolution: Emergence of Sponges During the Neoproterozoic

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Abstract

In the last 15 years, we had to cope with many technological and conceptual obstacles. The major hindrance was the view that sponges are primitive and exist separated from the other metazoan organisms. After answering these problems, the painful scientific process to position the most enigmatic metazoan phylum, the Porifera, into the correct phylogenetic place among the eukaryotes in general and the multicellular animals in particular came to an end. The well-studied taxon Porifera (sponges) was first grouped to the animal-plants or plant-animals, then to the Zoophyta or Mesozoa, and finally to the Parazoa. Only by the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell–cell and cell–matrix adhesion molecules, that were cloned from sponges (mainly the demosponges Suberites domuncula and Geodia cydonium) and that were subsequently expressed, share high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Together with the molecular biological studies and with the use of the cell culture technologies (primmorphs), which allowed an insight into the stem cell system of these simple organisms, it was possible to stethoscope back in the paleontological history of animals. These studies confirmed the view that the sponges evolved between two epochal ice times, 710–680 Ma (Sturtian glaciation) and 605–585 Ma (Varanger-Marinoan ice age), a period which allowed evolution to proceed but resulted also in a mass extinction of most animal taxa, with the exception of the Porifera. These animals could develop in the aqueous milieu which was rich in silica, due also to their ability to live in a symbiosis with unicellular organisms (prokaryotic and also eukaryotic). Those organisms provided the sponges with the nutrition to survive and to overcome the food deprivation in cold water and even in an environment under the ice. Based on the diverse genetic toolkit, the sponges could also resist the adverse temperature and sunlight climatic influences. It is fortunate that the sponges survived the last 800 million years with their basic body plan. This fact might qualify the sponges to become model organisms not only in biology and molecular biology but also to be used – as living fossils – as reference organisms to deduce important and new insights in the understanding of fossil records explored from the Neoproterozoic. Taken together, these data caused a paradigmatic change; the Porifera are complex and simple, but by far not primitive, and they contribute to the understanding of the deep evolution of animals in molecular biological and paleontological views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell T, Nefkens I, Müller WEG (2003) Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS Lett 554:363–368

    Article  CAS  PubMed  Google Scholar 

  • Arillo A, Bavestrello G, Burlando B, Sara M (1993) Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Marine Biol 117:159–162

    Article  CAS  Google Scholar 

  • Böger H (1988) Versuch über das phylogenetische System der Porifera. Meyniana 40:67–90

    Google Scholar 

  • Brasier M, Green O, Shields G (1997) Ediacarian sponge spicule clusters from southwest Mongolia and the origins of the Cambrian fauna. Geology 25:303–306

    Article  CAS  Google Scholar 

  • Breter HJ, Grebenjuk VA, Thakur NL, Müller IM, Müller WEG (2004) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: towards a molecular approach to understand the symbiotic relationship sponge-bacteria. Appl Environ Microbiol 70:2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield NJ (2007) Macroevolution and macroecology trough deep time. Palaeontology 50:41–55

    Article  Google Scholar 

  • Corsetti FA, Olcott AN, Bakermans C (2006) The biotic response to Neoproterozoic snowball earth. Palaeogeogr, Palaeoclimatol, Palaeoecol 232:114–130

    Article  Google Scholar 

  • Dewel RA (2000) Colonial origin of Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  CAS  PubMed  Google Scholar 

  • Efremova SM, Margulis BA, Guzhova IV, Itskovich VB, Lauenroth S, Müller WEG, Schröder HC (2002) Heat shock protein Hsp70 expression and DNA damage in Bakalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and paper plant. Aquat Toxicol 57:267–280

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ (1986) Evolutionary biology. Sinauer, Sunderland, MA

    Google Scholar 

  • Galliot B, Miller D (2000) Origin of anterior patterning – how old is our head? Trends Genet 16:1–5

    Article  CAS  PubMed  Google Scholar 

  • Gehling JG, Rigby JK (1996) Long expected sponges from the Neoproterozoic Ediacara Fauna of South Australia. J Paleontol 70:185–195

    Article  Google Scholar 

  • Grotzinger JP, Bowring SA, Saylor B, Kauffmann AJ (1995) New biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604

    Article  CAS  Google Scholar 

  • Grunz H (2004) The vertebrate organizer. Springer-Verlag, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent ß-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann PA, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change, Terra Nova 129–155

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerated evolutionary tempo. Proc Natl Acad Sci USA 91:6743–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Koziol C, Leys SP, Müller IM, Müller WEG (1997) Cloning of Hsp70 genes from the marine sponges Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges. Biol J Linn Soc 62:581–592

    Google Scholar 

  • Krasko A, Müller IM, Müller WEG (1997) Evolutionary relationships of the metazoan βγ-crystallins, including the one from the marine sponge Geodia cydonium. Proc Roy Soc Lond B 264:1077–1084

    Article  CAS  Google Scholar 

  • Krasko A, Schröder HC, Hassanein HMA, Batel R, Müller IM, Müller WEG (1998) Identification and expression of the SOS-response, aidB-like, gene in the marine sponge Geodia cydonium: implication for the phylogenetic relationships of metazoan Acyl-CoA dehydrogenases and Acyl-CoA oxidases. J Mol Evol 47:343–352

    Article  CAS  PubMed  Google Scholar 

  • Krasko A, Gundacker D, Leys SP, Schröder, HC, Müller IM, Müller WEG (2003) Molecular and functional analysis of the (6–4) photolyase from the hexactinellid Aphrocallistes vastus. Biochim Biophys Acta 1651:41–49

    Article  CAS  PubMed  Google Scholar 

  • Kruse M, Müller IM, Müller WEG (1997) Early evolution of Metazoan serine/threonine- and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 14:1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728

    Article  CAS  PubMed  Google Scholar 

  • Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Lendenfeld R V (1889) A monograph of the horny sponges. Royal Society, London

    Google Scholar 

  • Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JF, Brasier MD (2004) The evolution of the Precambrian atmosphere: carbon isotopic evidence from the Australian continent. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The precambrian earth: tempo and events. Elsevier, Amsterdam, pp 388–421

    Google Scholar 

  • Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil Trans Roy Soc Lond B 301:365–400

    Article  Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123:1–22

    Article  Google Scholar 

  • Mayr E (2001) What evolution is. Basic Books, New York

    Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypothesis of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehl D, Reiswig HM (1991) The presence of flagellar vanes in choanomeres of Porifera and their possible phylogenetic implications. Z Zool Syst Evolut-Forsch 29, 312–319

    Article  Google Scholar 

  • Morris CS (1993) The fossil record and the early evolution of the Metazoa. Nature 361:219–225

    Article  Google Scholar 

  • Morris CS (1994) Why molecular biology needs palaeontology. Development, Suppl:1–13

    Google Scholar 

  • Mostler H (1985) Neue heteractinide Spongien (Calcispongea) aus dem Unter- und Mittelkambrium Südwestsardiniens. Ber Nat Med Ver Innsbruck 72:7–32

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwiss 82:321–329

    Article  PubMed  Google Scholar 

  • Müller WEG (1998a) Origin of Metazoa: sponges as living fossils. Naturwiss 85:11–25

    Article  PubMed  Google Scholar 

  • Müller WEG (ed) (1998b) Molecular evolution: Evidence for monophyly of Metazoa Progr Molec Subcell Biol 19. Springer-Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460

    Article  Google Scholar 

  • Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309

    Google Scholar 

  • Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491

    Article  PubMed  Google Scholar 

  • Müller WEG, Müller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol 43:281–292

    Article  PubMed  Google Scholar 

  • Müller WEG, Zahn RK, Maidhof A (1982) Spongilla gutenbergiana n.sp., ein Süßwasserschwamm aus dem Mittel-Eozän von Messel. Senckenbergiana lethaea 63:465–472

    Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The Bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG, Li J, Schröder HC, Qiao L, Wang XH (2007a) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232

    Article  Google Scholar 

  • Müller WEG, Boreiko A, Wang XH, Belikov SI, Wiens M, Grebenjuk VA, Boreiko A, Schloßmacher U, Schröder HC (2007b) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG, Wang XH, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM and Schröder HC (2007c) Formation of siliceous spicules in dem-osponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of biomineralization, vol 1. Biological aspects and biology of biominerals structure formation. Wiley-VCH, Weinheim, pp 59–82

    Chapter  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • Pancer Z, Kruse M, Müller I, Müller WEG (1997) On the origin of adhesion receptors of metazoa: cloning of the integrin α subunit cDNA from the sponge Geodia cydonium. Mol Biol Evol 14:391–398

    Article  CAS  PubMed  Google Scholar 

  • Perović-Ottstadt S, Ćetković H, Gamulin V, Schröder HC, Kropf K, Moss C, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2004) Molecular markers for germ cell differentiation in the demosponge Suberites domuncula. Int J Dev Biol 48:293–305

    Article  PubMed  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3:179–184

    Article  CAS  Google Scholar 

  • Pilcher H (2005) Back to our roots. Nature 435:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Reitner J (1992) Ćoralline Spongien. Der Versuch einer phylogenetisch-taxonomischen Analyse. Berliner Geowiss Abh (E) 1:1–352

    Google Scholar 

  • Reitner J, Mehl D (1995) Early Paleozoic diversification of sponges: new data and evidences. Geol Paläont Mitt Innsbruck 20:335–347

    Google Scholar 

  • Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544

    Article  Google Scholar 

  • Rice HN, Halverson GP, Hoffmann PF (2003) Three for the Neoproterozoic: Sturtian, Marinoan and Varanger glaciations. EGS-AGU-EUG Joint Assembly, Nice, France, April 2003

    Google Scholar 

  • Rigby JK, Hou X-G (1995) Lower Cambrian demosponges and hexactinellid sponges from Yunnan, China. J Paleontol 69:1009–1019

    Article  Google Scholar 

  • Schäcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, New York/Stuttgart, pp 201–211

    Google Scholar 

  • Schulze FE (1887) Zur Stammesgeschichte der Hexactinelliden. Akademie der Wissenschaften, Berlin

    Google Scholar 

  • Schütze J, Reis Ćustodio M, Efremova SM, Müller IM, Müller WEG (1999) Evolutionary relationship of Metazoa within the eukaryotes based on molecular data from Porifera. Proc Roy Soc Lond B 266:63–73

    Article  Google Scholar 

  • Seilacker A (1989) Vendozoa: Organismic construction in the proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Ćambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh (E) 9:293–329

    Google Scholar 

  • Thakur NL, Perović-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biol 146:271–282

    Article  CAS  Google Scholar 

  • Walker G (2003) Snowball earth: the story of the great global catastrophe that spawned life as we know it. Crown Publishers, New York

    Google Scholar 

  • Weissenfels (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Wiens M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321

    Article  CAS  Google Scholar 

  • Wiens M, Mangoni A, D'Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demos-ponges. J Mol Evol 57:1–16

    Article  CAS  Google Scholar 

  • Wiens M, Perović-Ottstadt S, Müller IM, Müller WEG (2004) Allograft rejection in the mixed cell reaction system of the demosponge Suberites domuncula is controlled by differential expression of apoptotic genes. Immunogenetics 56:597–610

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959

    Article  CAS  PubMed  Google Scholar 

  • Wolpert L (1998) Principles of development. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Wang, X., Schröder, H.C. (2009). Paleoclimate and Evolution: Emergence of Sponges During the Neoproterozoic. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_3

Download citation

Publish with us

Policies and ethics