Skip to main content

Optical and Nonlinear Optical Properties of Sea Glass Sponge Spicules

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Abstract

Originating in nature, the combination of spongin protein with silicon dioxide extracted from seawater by silicatein protein presents a natural nanocomposite material of unique optical and mechanical properties. Mechanically, it combines the elasticity of protein with the flexibility and durability of silica. The light propagation inside spicules of glass sponges is of substantial interest for developing novel elements for photonics applications. The glass sponge spicules have remarkable light guiding properties. Our experimental research on passing laser pulses through spicules of Hyalonema sieboldi and Pheronema sp. reveals a concentration of guided light in the paraxial region. The multi-layer cladding of glass sponge spicules produced by nature has an obvious analogy with some contemporary artificial microstructured optical fibers. Our researches have shown that the core diameter and cladding layers thickness of the spicules of H. sieboldi and Pheronema sp. glass sponges are appropriate for causing photonic bandgaps in the infrared, visible, and ultraviolet wavelength regions. This enables singlemode waveguide and Bragg light propagation regimes in the spicules and provides exciting prospects of using them for the development of fundamentally new integrated optical elements based on peculiar waveguide properties of such structures, e.g., single-way waveguides (optical diodes) with increased mode field diameter and unique frequency and dispersion characteristics. Also, we have investigated the dynamics of propagation of intensive ultra-short pulses with durations T 0 < 40 fs through various patterns of spicules. Comparative analysis of the spectra of the output signals has shown that chromatic dispersion in spicules is considerably reduced, which can be explained by waveguide dispersion prevailing over material dispersion because of the multilayer structure of the cladding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal G.P. (2001) Nonlinear fiber optics. Academic, San Diego, CA

    Google Scholar 

  • Aizenberg J., Sundar V.C., Yablon A.D., Weaver J.C., Chen G. (2004) Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences of the USA 10: 3358–3363

    Google Scholar 

  • Aizenberg J., Weaver J.C., Thanawala M.S., Sundar V.C., Morse D.E., Fratzl P. (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309: 275–278

    CAS  PubMed  Google Scholar 

  • Apolonski A., Povazay B., Unterhuber A., Drexler W., Wadsworth W.J., Knight J.C., Russell P.S.J. (2002) Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses. Journal of Optical Society of America B 19: 2165–2170

    CAS  Google Scholar 

  • Argyros A. (2002) Guided modes and loss in Bragg fibres. Optics Express 10: 1411–1417

    PubMed  Google Scholar 

  • Bateman H., Erdelyi A. (1953) Higher transcendental functions, Vol. 2. McGraw-Hill, New York

    Google Scholar 

  • Born M., Wolf E. (2005) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  • Boyd R.W. (2003) Nonlinear optics. Academic Press, San Diego, CA

    Google Scholar 

  • Drozdov A.L. (2005) Biology for physicists and chemists. Far Eastern National University Press, Vladivostok (in Russian)

    Google Scholar 

  • Gaeta A.L. (2000) Catastrophic collapse of ultrashort pulses. Physical Review Letters 84: 3582–3585

    CAS  PubMed  Google Scholar 

  • Gorelik V.S. (2007) Optics of globular photonic crystals. Quantum Electronics 37: 409–432

    CAS  Google Scholar 

  • Hartl I., Li X.D., Chudoba C., Ghanta R.K., Ko T.H., Fujimoto J.G., Ranka J.K., Windeler R.S. (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Optics Letters 26: 608–610

    CAS  PubMed  Google Scholar 

  • Holzwarth R., Udem T., Hansch T.W., Knight J.C., Wadsworth W.J., Russell P.S.J. (2000) Optical frequency synthesizer for precision spectroscopy. Physical Review Letters 85: 2264–2267

    CAS  PubMed  Google Scholar 

  • Ibanescu M., Johnson S.G., Soljačić M., Joannopoulos J.D., Fink Y., Weisberg O., Engeness T.D., Jacobs S.A., Skorobogatiy M. (2003) Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E 67: 046608-1–046608-8

    Google Scholar 

  • Joannopoulos J.D., Meade R.D., Winn J.N. (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Johnson S.G., Ibanescu M., Skorobogatiy M., Weisberg O., Engeness T.D., Soljačić M., Jacobs S.A., Joannopoulos J.D., Fink Y. (2001) Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express 9: 748–779

    CAS  PubMed  Google Scholar 

  • Kodama Y. , Hasegawa A. (1987) Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics 23: 510–524

    Google Scholar 

  • Konorov S.O., Kolevatova O.A., Fedotov A.B., Serebryannikov E.E., Sidorov-Biryukov D.A., Mikhailova J.M., Naumov A.N., Beloglazov V.I., Skibina N.B., Mel'nikov L.A., Shcherbakov A.V., Zheltikov A.M. (2003) Waveguide modes of electromagnetic radiation in hollow-core microstructure and photonic-crystal fibers Journal of Experimental and Theoretical Physics 96: 857–869

    CAS  Google Scholar 

  • Kulchin Yu.N., Voznesensky S.S. (2007) (in Russian) In: Kulchin Yu.N. (ed) Selected works on “Promising Trends on Nanotechnology Development in the Far East of Russia”. Dalnauka, Vladivostok, pp. 10–42

    Google Scholar 

  • Kulchin Yu.N., Voznesensky S.S., Bukin O.A., Bagaev S.N., Pestriakov E.V. (2006) Optical Properties of Natural Biominerals-the Spicules of the Glass Sponges. Optical Memory and Neural Networks (Information Optics) 16: 189–197

    Google Scholar 

  • Kulchin Yu.N., Bukin O.A., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L., Kuryavy V.G., Maltseva T.L., Sinebruchov S.L., Therednichenko A.I. (2007a) Biological species of fiberoptic waveguides. “Nonlinear Waves” – 2006, Nizniy Novgorod, IAP RAS Press, pp. 548–559

    Google Scholar 

  • Kulchin Yu.N., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L. (2007b) Bulletin of Far Eastern Branch of RAS 1: 27–41 (in Russian)

    Google Scholar 

  • Kulchin Yu.N., Bukin O.A., Voznesensky S.S., Galkina A.N., Gnedenkov S.V., Drozdov A.L., Kuryavy V.G., Maltseva T.L., Nagorny I.G., Sinebruhov S.L., Therednichenko A.I. (2008) Fiber-optic waveguides on the base of natural biominerals – siliceous spicules of sea sponges. Quantum Electronics 38: 51–55

    CAS  Google Scholar 

  • Marcuse D. (1974) Theory of dielectric optical waveguides. Academic, New York

    Google Scholar 

  • Maslov D.V, Ostroumov E.E., Fadeev V. V. (2006) Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton). Quantum Electronics 36: 163–168

    CAS  Google Scholar 

  • Müller W.E.G., Wendt K., Geppert Ch., Wiens M., Reiber A., Schröder H.C. (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosensors and Bioelectronics 21: 1149–1155

    PubMed  Google Scholar 

  • Müller W.E.G., Eckert C., Kropf K., Wang X., Schloßmacher U., Seckert C., Wolf S.E., Tremel W., Schröder H.C. (2007a) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell and Tissue Research 329: 363–378

    PubMed  Google Scholar 

  • Müller W.E.C., Wang X., Belikov S.I., Tremel W., Schloßmacher U., Natoli A., Brandt D., Boreiko A., Tahir M.N., Muller I.M., Schröder H.C. (2007b) Formation of siliceous spicules in demosponges: example suberites domuncula. In: Baeuerlein E. (ed) Handbook of biominer-alization. Biological aspects and structure formation. Wiley-VCH, Weinheim, pp. 59–82

    Google Scholar 

  • Müller W.E.G., Wang X., Kropf K., Ushijima H., Geurtsen W., Eckert C., Tahir, M.N., Tremel W., Boreiko A., Schloßmacher U., Li J., Schröder H.C. (2008a) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Journal of Structural Biology 161: 188–203

    PubMed  Google Scholar 

  • Müller W.E.G., Boreiko A., Schloßmacher U., Wang X., Eckert C., Kropf K., Li J., Schröder H.C. (2008b) Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. The Journal of Experimental Biology 211: 300–309

    PubMed  Google Scholar 

  • Müller W.E.G., Schloßmacher U., Wang X., Boreiko A., Brandt D., Wolf S.E., Tremel W., Schröder H.C. (2008c) Poly(silicate)-metabolizing silicatein in siliceous spicules and sili-casomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS Journal 275: 362–370

    PubMed  Google Scholar 

  • Samsonov G.V. (1978) Physical and chemical properties of oxides. Metalurgia Press, Moscow (in Russian)

    Google Scholar 

  • Schröder H.C., Brandt D., Schloßmacher U., Wang X., Tahir M.N., Tremel W., Belikov S.I., Müller W.E.G. (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94: 339–359

    PubMed  Google Scholar 

  • Schröder H.C., Wang X., Tremel W., Ushijima H., Müller W.E.G. (2008) Biofabrication of biosilica-glass by living organisms. Natural Product Report 25: 455–474

    Google Scholar 

  • Smirnov S.V., Ania-Castanon J.D., Ellingham T.J., Kobtsev S.M., Kukarin S., Turitsyn S.K. (2006) Optical spectral broadening and supercontinuum generation in telecom applications. Optical Fiber Technology 12: 122–147

    Google Scholar 

  • Solimeno S., Crosignani B., Di Porto P. (1986) Guiding, Diffraction, and Confinement of Optical Radiation. Academic, San Diego, CA

    Google Scholar 

  • Sundar V.C., Yablon A.D., Grazul J.L., Ilan M., Aizenberg J. (2003) Fiber-optical features of a glass sponge. Nature 424: 899–900

    CAS  PubMed  Google Scholar 

  • Uriz M.-J., Turon X., Becerro M.A., Agell G. (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique 62: 279–299

    CAS  PubMed  Google Scholar 

  • Vienne G., Xu Y., Jakobsen Ch., Deyerl H.-J., Jensen J.B., Sorensen T., Hansen T.P., Huang Y., Terrel M., Lee R.K., Mortensen N.A., Broeng J., Simonsen H., Bjarklev A. and Yariv A. (2004) Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-sup-ports. Optics Express 12: 3500–3508

    PubMed  Google Scholar 

  • Yariv A., Yeh P. (1984) Optical waves in crystals. Wiley, New York

    Google Scholar 

  • Yeh P., Yariv A., Hong C.S. (1977) Electromagnetic propagation in periodic stratified media. I. General theory. Journal of Optical Society of America 67: 423–438

    Google Scholar 

  • Yeh P., Yariv A., Marom E. (1978) Theory of Bragg fiber. Journal of Optical Society of America 68: 1196–1201

    Google Scholar 

  • Zheltikov A.M. (2004) Nonlinear optics of microstructure fibers. Physics-Uspekhi 47: 69–98

    CAS  Google Scholar 

  • Zheltikov A.M. (2007) Microstructure optical fibers for a new generation of fiber-optic sources and converters of light pulses. Physics-Uspekhi 50: 705–729

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kulchin, Y.N. et al. (2009). Optical and Nonlinear Optical Properties of Sea Glass Sponge Spicules. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_14

Download citation

Publish with us

Policies and ethics