Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 1))

  • 1024 Accesses

Abstract

In this Chapter the application of dynamical systems to model reactive and precognitive behaviours is discussed. We present an approach to navigation based on the control of a chaotic system that is enslaved, on the basis of sensory stimuli, into low order dynamics that are used as percepts of the environmental situations. Another aspect taken into consideration, is the introduction of correlation mechanisms, important for the emergence of anticipation. In this case a spiking network is used to control a simulated robot learning to anticipate sensory events. Finally the proposed approach has been applied to solve a landmark navigation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.M.: A model for landmark learning in the honey-bee. Journal of Comparative Physiology A 114(335) (1977)

    Google Scholar 

  2. Arena, P., Basile, A., Bucolo, M., Fortuna, L.: An object oriented segmentation on analog CNN chip. IEEE Trans. CAS I 50(7), 837–846 (2003)

    Article  Google Scholar 

  3. Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., Patané, L.: Turing patterns in RD-CNNs for the emergence of perceptual states in roving robots. International Journal of Bifurcation and Chaos 18(1), 107–127 (2007)

    Article  Google Scholar 

  4. Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., Vagliasindi, G.: Weak Chaos Control for Action-Oriented Perception: Real Time Implementation via FPGA. In: Proc. International conference on Biomedical Robotics and Biomechatronics (Biorob), Pisa, Italy, February 20-22 (2006)

    Google Scholar 

  5. Arena, P., De Fiore, S., Frasca, M., Patané, L. (2006), http://www.scg.dees.unict.it/activities/biorobotics/perception.htm

  6. Arena, P., Fortuna, L., Frasca, M., Lo Turco, G., Patané, L., Russo, R.: A new simulation tool for action oriented perception systems. In: Proc. 10th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Catania, Italy, September 19-22 (2005)

    Google Scholar 

  7. Arena, P., Fortuna, L., Frasca, M., Patané, L., Barbagallo, D., Alessandro, C.: Learning high-level sensors from reflexes via spiking networks in roving robots. In: Proceedings of 8th International IFAC Symposium on Robot Control (SYROCO), Bologna, Italy (2006)

    Google Scholar 

  8. Arkin, R.C.: Behaviour Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  9. Beard, R., McClain, T.: Motion Planning Using Potential Fields, BYU (2003)

    Google Scholar 

  10. Bingman, V.P., Gagliardo, A., Hough, G.E., Ioalé, P., Kahn, M.C., Siegel, J.J.: The Avian Hippocampus, Homing in Pigeons and the Memory Representation of Large-Scale Space. Integr. Comp. Biol. 45, 555–564 (2005)

    Article  Google Scholar 

  11. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The Control of Chaos: Theory and Applications. Physics Reports 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  12. Burgess, N., Becker, S., King, J.A., O’Keefe, J.: Memory for events and their spatial context: models and experiments. Phil. Trans. R. Soc. Lond. B 356, 1–11 (2001)

    Article  Google Scholar 

  13. Burgess, N., O’Keefe, J.: Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus 6, 749–762 (1996)

    Article  Google Scholar 

  14. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)

    Article  MATH  Google Scholar 

  15. Cartwright, B.A., Collett, T.S.: Landmark learning in bees. The Journal of Comparative Phisiology A 151(85) (1983)

    Google Scholar 

  16. Collett, T.S.: Insect navigation en route to the goal: Multiple strategies for the use of landmarks. The Journal of Experimental Biology 202, 1831–1838 (1999)

    Google Scholar 

  17. Cruse, H.: A recurrent network for landmark-based navigation. Biological Cybernetics 88, 425–437 (2003)

    MATH  Google Scholar 

  18. Floreano, D., Mattiussi, C.: Evolution of Spiking Neural Controllers for Autonomous Vision-based Robots. Evolutionary Robotics IV. Springer, Berlin (2001)

    Google Scholar 

  19. Franceschini, N., Blanes, C.: From insect vision to robot vision. Philosophical Transaction of the Royal Society of London B 337, 283–294 (1992)

    Article  Google Scholar 

  20. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  21. Freeman, W.J.: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150 (1987)

    Article  Google Scholar 

  22. Freeman, W.J.: The physiology of perception. Sci. Am. 264, 78–85 (1991)

    Article  Google Scholar 

  23. Freeman, W.J.: Characteristics of the Synchronization of Brain Activity Imposed by Finite Conduction Velocities of Axons. International Journal of Bifurcation and Chaos 10(10) (1999)

    Google Scholar 

  24. Freeman, W.J.: A Neurobiological Theory of Meaning in Perception. Part I: Information and Meaning in Nonconvergent and Nonlocal Brain Dynamincs. International Journal of Bifurcation and Chaos 13(9) (2003)

    Google Scholar 

  25. Freeman, W.J.: How and Why Brains Create Meaning from Sensory Information. International Journal of Bifurcation and Chaos 14(2) (2004)

    Google Scholar 

  26. Fuster, J.M.: Cortex and Mind: Unifying Cognition. Oxford University Press, Oxford (2003)

    Google Scholar 

  27. Grossberg, S., Maass, W., Markram, H.: Introduction: Spiking Neurons in Neuroscience and Technology. Neural Networks, special issue on Spiking Neurons 14(6-7), 587 (2001)

    Google Scholar 

  28. Harter, D.: Evolving neurodynamics controllers for autonomous robots. In: International Joint Conference on Neural Networks, pp. 137–142 (2005)

    Google Scholar 

  29. Harter, D., Kozma, R.: Chaotic Neurodynamics for autonomous agents. IEEE Trans. on Neural Networks 16(3), 565–579 (2005)

    Article  Google Scholar 

  30. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  31. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  32. Izhikevich, E.M.: Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex Advance (2007)

    Google Scholar 

  33. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-Timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)

    Article  Google Scholar 

  34. Jensen, O., Lisman, J.E.: Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. TRENDS in Neurosciences 28(2) (2005)

    Google Scholar 

  35. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Intemational Journal of Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  36. Koene, R.A., Gorchetchnikov, A., Cannon, R.C., Hasselmo, M.E.: Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Networks 16, 577–584 (2003)

    Article  Google Scholar 

  37. Kozma, R., Freeman, W.J.: Chaotic Resonance - Methods and Applications for Robust Classification of Noisy and Variable Patterns. International Journal of Bifurcation and Chaos 11(6) (2000)

    Google Scholar 

  38. LĂ¼, J., Chen, G., Yu, X., Leung, H.: Design and Analysis of Multiscroll Chaotic Attractors from Saturated Function Series. IEEE Trans. Circuits Syst., I: Regular Paper 51 (2004)

    Google Scholar 

  39. Manganaro, G., Arena, P., Fortuna, L.: Cellular Neural Networks: Chaos, Complexity, and VLSI Processing. Springer, Berlin (1999)

    MATH  Google Scholar 

  40. Nicholson, D.J., Judd, S.P.D., Cartwright, A., Collett, T.S.: View-based navigation in insects: how wood ants (Formica rufa L). The Journal of Experimental Biology 202, 1831–1838 (1999)

    Google Scholar 

  41. Pavlov, I.P.: Conditioned Reflexes. Oxford University Press, London (1927)

    Google Scholar 

  42. Pyragas, K.: Continuos Control of Chaos by Self-Controlling Feedback. Physical Letters A 170, 421–428 (1992)

    Article  Google Scholar 

  43. Pyragas, K.: Predictable Chaos in Slightly Pertirbed Unpredictable Chaotic Systems. Physics Letters A 181, 203–210 (1993)

    Article  Google Scholar 

  44. Restle, F.: Discrimination of cues in mazes: A resolution of the ‘place-vs-response’ question. Psychological Review 64(4), 217–228 (1957)

    Article  Google Scholar 

  45. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps - An Introduction. Addison-Wesley, New York (1992)

    MATH  Google Scholar 

  46. Shepherd, G.M.: Neurobiology. Oxford University Press, Oxford (1994)

    Google Scholar 

  47. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987)

    Google Scholar 

  48. Song, S., Abbott, L.F.: Cortical development and remapping through Spike Timing-Dependent Plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  49. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent plasticity. Nature Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  50. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically-based Artificial Navigation Systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)

    Article  Google Scholar 

  51. Uexku, J.V.: Theoretical Biology. Harcourt, Brace (1926)

    Google Scholar 

  52. Verschure, P.F.M.J., Kröse, B.J.A., Pfeifer, R.: Distributed adaptive control: The self-organization of structured behavior. Robotics and Autonomous Systems 9, 181–196 (1992)

    Article  Google Scholar 

  53. Verschure, P.F.M.J., Pfeifer, R.: Categorization, Representations, and the Dynamics of System-Environment Interaction: a case study in autonomous systems. In: Meyer, J.A., Roitblat, H., Wilson, S. (eds.) From Animals to Animats: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp. 210–217. MIT Press, Cambridge (1992)

    Google Scholar 

  54. Webb, B., Consi, T.R.: Biorobotics. MIT Press, Cambridge (2001)

    Google Scholar 

  55. Webb, B., Scutt, T.: A simple latency dependent spiking neuron model of cricket phonotaxis. Biological Cybernetics 82(3), 247–269 (2000)

    Article  Google Scholar 

  56. Weber, A.K., Venkatesh, S., Srinivasan, M.: Insect-inspired robotic homing. Adaptative behavior 7, 65–97 (1999)

    Article  Google Scholar 

  57. Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: Coupling of egocentric and geocentric. The Journal of Experimental Biology 199, 129–140 (1996)

    Google Scholar 

  58. Zampoglou, M., Szenher, M., Webb, B.: Adaptation of Controllers for Image-Based Homing. Adaptive Behaviour 14(4), 381–399 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arena, P., De Fiore, S., Frasca, M., Lombardo, D., Patané, L. (2009). From Low to High Level Approach to Cognitive Control. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88464-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88463-7

  • Online ISBN: 978-3-540-88464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics