Skip to main content

What Exactly is the Information Paradox?

  • Chapter
Physics of Black Holes

Part of the book series: Lecture Notes in Physics ((LNP,volume 769))

abstract

The black hole information paradox tells us something important about the way quantum mechanics and gravity fit together. In these lectures I try to give a pedagogical review of the essential physics leading to the paradox, using mostly pictures. Hawking’s argument is recast as a ‘theorem’: if quantum gravity effects are confined to within a given length scale and the vacuum is assumed to be unique, then there will be information loss. We conclude with a brief summary of how quantum effects in string theory violate the first condition and make the interior of the hole a ‘fuzzball’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].

    Google Scholar 

  3. S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. D. Mathur, Fortsch. Phys. 53, 793 (2005) [arXiv:hep-th/0502050].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. S. D. Mathur, Class. Quant. Grav. 23, R115 (2006) [arXiv:hep-th/0510180].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. I. Bena and N. P. Warner, arXiv:hep-th/0701216.

    Google Scholar 

  7. N. D. Birrell and P. C. W. Davies, Quantum Fields In Curved Space, (Cambridge University Press, Cambridge 1982), 340p.

    MATH  Google Scholar 

  8. S. A. Fulling, Aspects of quantum field theory in curved space-time, London Math. Soc. Student Texts 17, 1 (1989).

    MathSciNet  Google Scholar 

  9. R. M. Wald, Commun. Math. Phys. 45, 9 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Parker, Phys. Rev. D 12, 1519 (1975).

    Article  ADS  Google Scholar 

  11. S. B. Giddings and W. M. Nelson, Phys. Rev. D 46, 2486 (1992) [arXiv:hep-th/9204072].

    Article  ADS  MathSciNet  Google Scholar 

  12. S. D. Mathur, Int. J. Mod. Phys. A 15, 4877 (2000) [arXiv:gr-qc/0007011].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. S. D. Mathur, Int. J. Mod. Phys. D 11, 1537 (2002) [arXiv:hep-th/0205192].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A. Chamblin and J. Michelson, Class. Quant. Grav. 24, 1569 (2007) [arXiv:hep-th/0610133].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. L. Susskind, arXiv:hep-th/9309145.

    Google Scholar 

  16. J. G. Russo and L. Susskind, Nucl. Phys. B 437, 611 (1995) [arXiv:hep-th/9405117].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. A. Sen, Nucl. Phys. B 440, 421 (1995) [arXiv:hep-th/9411187].

    Article  MATH  ADS  Google Scholar 

  18. A. Sen, Mod. Phys. Lett. A 10, 2081 (1995) [arXiv:hep-th/9504147].

    Article  ADS  Google Scholar 

  19. C. Vafa, Nucl. Phys. B 463, 435 (1996) [arXiv:hep-th/9512078].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. R. M. Wald, Phys. Rev. D 48, 3427 (1993) [arXiv:gr-qc/9307038].

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Dabholkar, Phys. Rev. Lett. 94, 241301 (2005) [arXiv:hep-th/0409148].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].

    Article  ADS  MathSciNet  Google Scholar 

  23. C. G. Callan and J. M. Maldacena, Nucl. Phys. B 472, 591 (1996) [arXiv:hep-th/9602043].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. O. Lunin and S. D. Mathur, Nucl. Phys. B 623, 342 (2002) [arXiv:hep-th/0109154].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. O. Lunin and S. D. Mathur, Phys. Rev. Lett. 88, 211303 (2002) [arXiv:hep-th/0202072].

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Giusto, S. D. Mathur and A. Saxena, Nucl. Phys. B 710, 425 (2005) [arXiv:hep-th/0406103].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. O. Lunin, JHEP 0404, 054 (2004) [arXiv:hep-th/0404006].

    Article  ADS  MathSciNet  Google Scholar 

  28. I. Bena and N. P. Warner, arXiv:hep-th/0701216.

    Google Scholar 

  29. I. Bena and N. P. Warner, Adv. Theor. Math. Phys. 9, 667 (2005) [arXiv:hep-th/0408106].

    MATH  MathSciNet  Google Scholar 

  30. V. Balasubramanian, E. G. Gimon and T. S. Levi, arXiv:hep-th/0606118.

    Google Scholar 

  31. I. Kanitscheider, K. Skenderis and M. Taylor, arXiv:0704.0690 [hep-th].

    Google Scholar 

  32. V. Jejjala, O. Madden, S. F. Ross and G. Titchener, Phys. Rev. D 71, 124030 (2005) [arXiv:hep-th/0504181].

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Cardoso, O. J. C. Dias, J. L. Hovdebo and R. C. Myers, Phys. Rev. D 73, 064031 (2006) [arXiv:hep-th/0512277].

    Article  ADS  MathSciNet  Google Scholar 

  34. B. D. Chowdhury and S. D. Mathur, arXiv:0711.4817 [hep-th].

    Google Scholar 

  35. S. R. Das and S. D. Mathur, Phys. Lett. B 375, 103 (1996) [arXiv:hep-th/9601152].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. J. M. Maldacena and L. Susskind, Nucl. Phys. B 475, 679 (1996) [arXiv:hep-th/9604042].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. S. D. Mathur, Nucl. Phys. B 529, 295 (1998) [arXiv:hep-th/9706151].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. T. M. Fiola, J. Preskill, A. Strominger and S. P. Trivedi, Phys. Rev. D 50, 3987 (1994) [arXiv:hep-th/9403137].

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Keski-Vakkuri and S. D. Mathur, Phys. Rev. D 50, 917 (1994) [arXiv:hep-th/9312194].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. D. Mathur, arXiv:0706.3884 [hep-th].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathur, S. (2009). What Exactly is the Information Paradox?. In: Papantonopoulos, E. (eds) Physics of Black Holes. Lecture Notes in Physics, vol 769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88460-6_1

Download citation

Publish with us

Policies and ethics