Skip to main content

A Geometric Primitive Extraction Process for Remote Sensing Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

This paper presents a new approach to describe images in terms of geometric objects. Methods based on conventional stochastic marked point processes have already led to convincing image analysis results but possess several drawbacks such as complex parameter tuning, large computing time, and lack of generality. We propose a generalized marked point process model which can be performed in shorter computing times and applied to a variety of applications without modifying the model or tuning parameters. In our approach, both linear and areal primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model. A Jump-Diffusion process is performed to find the optimal object configuration. Experiments with remotely sensed images show good potentialities of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, P.: Reversible Jump Markov Chains Monte Carlo computation and Bayesian model determination. Biometrika 57, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dick, A., Torr, P., Cipolla, R.: Modelling and interpretation of architecture from several images. International Journal of Computer Vision 60(2), 111–134 (2004)

    Article  Google Scholar 

  3. Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Building reconstruction from a single dem. In: Proc. IEEE Computer Vision and Pattern Recognition, Anchorage, United States (2008)

    Google Scholar 

  4. Wu, Y., Zhu, S., Guo, C.: Statistical modeling of texture sketch. In: Proc. of European Conference on Computer Vision, Copenhagen, Denmark (2002)

    Google Scholar 

  5. Ortner, M., Descombes, X., Zerubia, J.: Building outline extraction from Digital Elevation Models using marked point processes. International Journal of Computer Vision 72, 107–132 (2007)

    Article  Google Scholar 

  6. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 1568–1579 (2005)

    Article  MATH  Google Scholar 

  7. Perrin, G., Descombes, X., Zerubia, J.: Adaptive simulated annealing for energy minimization problem in a marked point process application. In: Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition, St Augustine, United States (2005)

    Google Scholar 

  8. Descamps, S., Descombes, X., Béchet, A., Zerubia, J.: Automatic flamingo detection using a multiple birth and death process. In: Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing, Las Vegas, United States (2008)

    Google Scholar 

  9. Van Lieshout, M.: Markov point processes and their applications. Imperial College Press, London (2000)

    Book  MATH  Google Scholar 

  10. Metropolis, M., Rosenbluth, A., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  11. Geyer, C., Moller, J.: Simulation and likelihood inference for spatial point processes. Scandinavian Journal of Statistics Series B, 359–373 (1994)

    Google Scholar 

  12. Grenander, U., Miller, M.: Representations of Knowledge in Complex Systems. Journal of the Royal Statistical Society 56, 1–33 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Han, F., Tu, Z., Zhu, S.: Range Image Segmentation by an Effective Jump-Diffusion Method. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 1138–1153 (2004)

    Article  Google Scholar 

  14. Srivastava, A., Miller, M., Grenander, U.: Multiple target direction of arrival tracking. IEEE Trans. on Signal Processing 43, 282–285 (1995)

    Article  Google Scholar 

  15. Hastings, W.: Monte Carlo sampling using Markov chains and their applications. Biometrica 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geman, S., Huang, C.: Diffusion for global optimization. SIAM Journal on Control and Optimization 24(5), 131–143 (1986)

    Article  MathSciNet  Google Scholar 

  17. White, S.: Concepts of scale in simulated annealing. In: Proc. IEEE International Conference on Computer Design (1984)

    Google Scholar 

  18. Lafarge, F., Gimel’farb, G.: Texture representation by geometric objects using a jump-diffusion process. In: Proc. British Machine Vision Conference, Leeds, United Kingdom (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lafarge, F., Gimel’farb, G., Descombes, X. (2008). A Geometric Primitive Extraction Process for Remote Sensing Problems. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics