Skip to main content

Fluid Flow Measurement in Thermographic Video Sequences by Wavelet-Multiresolution Optical Flow Estimation

  • Conference paper
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

Variational Optical Flow estimation models have proven to be highly useful tools for both tracking (rigid) object paths and for calculating motion fields registered in digital video sequences. Specific acquisition techniques, such as infrared thermographic video, allow to carry out further studies of the fluid dynamics for several kind of phenomena. This paper presents a methodological approach to obtain a reliable estimation of the temporal evolution of thermal structures in fluid surfaces using a multiresolution scheme based on the Galerkin-Wavelet Analysis. An appropriate regularizer, adapted for the specific problem herein presented, is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  2. Aubert, G., Deriche, R., Kornprobst, P.: Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics 60, 156–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: combining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  4. Suter, D.: Motion estimation and vector splines. In: CVPR 1994, pp. 939–942 (1994)

    Google Scholar 

  5. Ruhnau, P., Stahl, A., Schnorr, C.: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 444–454. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Francomano, E., Tortorici, A., Calderone, V.: Regularization of optical flow with m-band wavelet transform. Computers and Mathematics with Applications 45, 437–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: Proc. Int. Conf. Computer Vision, pp. 933–938 (1998)

    Google Scholar 

  8. Arigovindan, M., Sühling, M., Jansen, C.P., Hunziker, P., Unser, M.: Full flow/motion-field recovery from pulsed-wave ultrasound doppler data. In: Proceedings of the 2006 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 213–216 (2006)

    Google Scholar 

  9. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24, 365–380 (2002)

    Article  MATH  Google Scholar 

  10. Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Int. J. Experiments in Fluid 40, 80–97 (2006)

    Article  Google Scholar 

  11. Varzhanskaya, T.S.: Boundary condition formulation for viscous fluid flow problems. Fluid Dynamics 4, 97–98 (2005)

    Article  Google Scholar 

  12. Chen, L.F., Lin, J.C., Liao, H.Y.M.: Wavelet-based optical flow estimation. ICPR 03, 7068 (2000)

    Google Scholar 

  13. Oslick, M., Linscott, I., Maslakovic, S., Twicken, J.: Computing derivatives of scaling functions and wavelets. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, USA, pp. 357–360 (1998)

    Google Scholar 

  14. Latto, A., Resnikoff, A.H.L., Tenenbaum, A.E.: The evaluation of connection coefficients of compactly supported wavelets. In: Proceedings of the French-USA Workshop on Wavelets and Turbulence. Springer, New York (1991)

    Google Scholar 

  15. Bindal, A., Khinast, J.G., Ierapetritou, M.G.: Adaptative multiscale solution of dynamical systems in chemical processes using wavelets. Computer and Chemical Engineering 27, 131–142 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franco, H., Perea, Á., Romero, E., Rodríguez, D. (2008). Fluid Flow Measurement in Thermographic Video Sequences by Wavelet-Multiresolution Optical Flow Estimation. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics