Skip to main content

Abstract

In this chapter, we present the principles of conventional Mössbauer spectrometers with radioactive isotopes as the light source; Mössbauer experiments with synchrotron radiation are discussed in Chap. 9 including technical principles. Since complete spectrometers, suitable for virtually all the common isotopes, have been commercially available for many years, we refrain from presenting technical details like electronic circuits. We are concerned here with the functional components of a spectrometer, their interaction and synchronization, the different operation modes and proper tuning of the instrument. We discuss the properties of radioactive γ-sources to understand the requirements of an efficient γ-counting system, and finally we deal with sample preparation and the optimization of Mössbauer absorbers. For further reading on spectrometers and their technical details, we refer to the review articles [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most Mössbauer spectrometers use triangular velocity profiles. Saw-tooth motion induces excessive ringing of the drive, caused by extreme acceleration during fast fly-back of the drive rod. Sinusoidal operation at the eigen frequency of the vibrating system is also found occasionally and requires the least effort for accurate control. However, it has the disadvantage that the source lingers a relatively longer time around zero velocity and passes fast through the high-velocity regimes yielding highly nonlinear baselines. For special applications, it may be very useful to choose the constant velocity mode (switching only between +υ and −υ), or to scan a limited region-of-interest (focused sweeps through short linear regimes, +υ max to +υ min, and −v max to −υ min).

  2. 2.

    This is a highly schematic description. Commercial Mössbauer spectrometers have fixed magnets and moving coils in the style of acoustic loudspeaker systems. Drive and pick-up coils are attached to the moving rod or tube. Both are mounted inside the narrow gap of strong yoke magnets made of a neodymium–iron–boron alloy or another strong magnetic material.

  3. 3.

    The numbers are generic for our example and may be different for a real system, depending on the number of channels used in the MCA and the frequency chosen for the drive system. The channel numbers are usually a certain power of two; like 512 = 29. The value of ≈100 μs applies to a spectrometer with 512 channels operated at 20 Hz, which means a period time of 50 ms. The exact dwell time is obtained from the ratio of period time to the number of channels, which is 50 ms/512 = 97.7 µs per channel.

  4. 4.

    The polarity of both the drive coil and pick-up coil of the Mössbauer motor can be changed together without changing the performance.

  5. 5.

    This is meant schematically; modern MCA modules usually do not have a screen but are controlled by a front-end PC for parameter setting and data visualization.

  6. 6.

    The true energy scale of the γ-spectrum in units of keV usually cannot be derived directly from the pulse height spectrum because the overall amplification of the detection system is not known. Therefore, the γ-lines eventually have to be identified by trial and error when a new system is set up by checking for the occurrence of the Mössbauer effect.

  7. 7.

    The Auger effect is the phenomenon involving electron–hole recombination in an inner-shell vacancy causing the emission of another electron.

  8. 8.

    It is difficult to give an exact limit because the impact of thickness broadening depends on the intrinsic width of experimental lines [31], which often exceeds the natural width 2Γ nat by 0.05−0.1 mm s−1 for 57Fe as studied in inorganic chemistry. This inhomogeneous broadening, which is due to heterogeneity and strain in the sample, causes a reduction of the effective thickness. Rancourt et al. have treated this feature in detail for iron minerals [32].

  9. 9.

    The mass absorption of a solution of an iron complex in CH2Cl2 is usually entirely dominated by the solvent. With μ e  = 16.83 cm2 g−1, the optimized sample thickness topt is between 0.059 and 0.119 g cm−2, or 45–89 μl cm−2, which corresponds to a layer thickness of 0.45–0.89 mm.

  10. 10.

    Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany; e-mail: klingel@uni-mainz.de

References

  1. Kalvius, G. M., Kankeleit, E. In: Mössbauer Spectroscopy and its Applications Proceedings, p. 9. IAEA, Vienna (1972)

    Google Scholar 

  2. Cohen, R.L., Wertheim, G.K.: Methods Exp. Phys. 11, 307 (1974)

    CAS  Google Scholar 

  3. Cranshaw, T. E. In: Mössbauer Spectroscopy Applied to Inorganic Chemistry, p. 27. Plenum, New York (1984)

    Google Scholar 

  4. Kankeleit, E.: Rev. Sci. Instrum. 35, 194 (1964)

    Article  CAS  Google Scholar 

  5. Kankeleit, E.: In: International Conference on Mössbauer Spectroscopy Proceedings, vol. 2, 43. Cracow (Poland) (1975)

    Google Scholar 

  6. Potzel, W.: In: Mössbauer Spectroscopy Applied to Magnetism and Material Science, p. 305. Plenum, New York, (1993)

    Google Scholar 

  7. Helisto, P., Katila, T., Potzel, W., Riski, K.: Phys. Rev. Lett. A 85, 177 (1981)

    CAS  Google Scholar 

  8. Stevens, J.G.: In: Stevens, J.G., Stevens, V.E., White, R.M., Gibson, J.L. (eds.): Mössbauer Effect Reference and Data Journal, p. 99. Mössbauer Effect Data Center, NC (1980)

    Google Scholar 

  9. Fritz, R., Schulze, D.: Nucl. Instrum. Methods 62, 317 (1968)

    Article  CAS  Google Scholar 

  10. Cranshaw, T.E.: J. Phys. E 6, 9 (1976)

    Google Scholar 

  11. Viegers, M.P.A.: Doctoral Dissertation p. 13, University of Nijmegen (1976)

    Google Scholar 

  12. Amersham International Limited, Technical Catalog RS16-8, Mössbauer Sources (1981)

    Google Scholar 

  13. Shigematsu, T., Pfannes, H.-D., Keune, W.: Phys. Rev. Lett. 45, 1206 (1980)

    Article  CAS  Google Scholar 

  14. Swanson, K.R., Spijkerman, J.J.: J. Appl. Phys. 41, 3155 (1970)

    Article  CAS  Google Scholar 

  15. Hanzel, D., Griesbach, P., Meisel, W., Gütlich, P.: Hyperfine Interact. 71, 1441 (1992)

    Article  CAS  Google Scholar 

  16. Ruskov, T., Passage, G., Rastanawi, A., Radev, R.: Nucl. Instrum. Methods B 94, 565 (1994)

    Google Scholar 

  17. Sawicki, J.A., Sawicka, B.D., Stanek, J.: Nucl. Instrum. Methods 138, 565 (1976)

    Article  CAS  Google Scholar 

  18. Weyer, G.: In: Mössbauer Effect Methodology, p. 301. Plenum, New York (1976)

    Google Scholar 

  19. Mantovan, R., Fanciulli, M.: Rev. Sci. Instrum. 78, 063902 (2007)

    Article  Google Scholar 

  20. Liljequist, D., Ismail, M.: Phys. Rev. B 31, 4131 (1985)

    Google Scholar 

  21. Sato, H., Mitsuhashi, M.: Hyperfine Interact. 58, 2535 (1990)

    Article  CAS  Google Scholar 

  22. Liljequist, D., Ismail, M., Saneyoshi, K., Debusmann, K., Keune, W., Brand, R.A., Kiauka, W.: Phys. Rev. B 31, 4137 (1985)

    Google Scholar 

  23. Macedo, W.A.A., Pelloth, D., Toriyama, T., Nikolov, O., Kruijer, S., Scholz, B., Brand, R.A., Keune, W.: Hyperfine Interact. 92, 1221 (1994)

    Article  CAS  Google Scholar 

  24. Shigematsu, T., Pfannes, H.-D., Keune, W.: In: Mössbauer Spectroscopy and its Chemical Applications. American Chemical Society, Washington, DC (1981)

    Google Scholar 

  25. Bokemeyer, H., Wohlfahrt, K., Kankeleit, E., Eckhardt, D.: Z. Phys. A 274, 305 (1975)

    Google Scholar 

  26. Stahl, B., Kankeleit, E.: Nucl. Instr. Sec. B 122, 149 (1997)

    Article  Google Scholar 

  27. De Grave, E., Vandenberghe, R.E., Dauwe, C.: Hyperfine Interact. 161, 147 (2005)

    Article  CAS  Google Scholar 

  28. Alonzo, G., Consiglio, M., Gionfriddo, N., Bardi, G.: Hyperfine Interact. 46, 703 (1989)

    Article  Google Scholar 

  29. Kalvius, G.M., Katila, T.E., Lounasmaa, O.V.: In: Mössbauer Effect Methodology 5, p. 231. Plenum, New York (1970)

    Google Scholar 

  30. Spijkerman, J.J., Ruegg, F.C., de Voe, J.R.: In: Mössbauer Effect Methodology 1, p. 119. Plenum, New York (1965)

    Google Scholar 

  31. Ping, J., Rancourt, D.: Hyperfine Interact. 71, 1433 (1992)

    Article  CAS  Google Scholar 

  32. Rancourt, D.G., McDonald, A.M., Lalonde, A.E., Ping, J.Y.: Am. Mineral. 78, 1 (1993)

    CAS  Google Scholar 

  33. Long, G.J., Cranshaw, T.E., Longworth, G.: In: Mössbauer Effect Reference and Data Journal, p.42. Mössbauer Effect Data Center, NC (1983)

    Google Scholar 

  34. Storm, E., Gilbert, E., Israel, H.: In: Gamma-Ray Absorption Coefficients for Elements 1 Through 100, Los Alamos Scientific Laboratory LA-2237. University of California, New Mexico (1958)

    Google Scholar 

  35. Münck, E.: In: Methods in Enzymology, vol. LIV, p. 346. Academic, New York (1978)

    Google Scholar 

  36. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Rodionov, D., de Souza Jr., P.A., Squyres, S.W., Foh, J., Kankeleit, E., Bonnes, U., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., Prilutski, O.: J. Geophys. Res. 108, 8067 (2003)

    Article  Google Scholar 

  37. Squyres, S.W., Arvidson, R.E., Baumgartner, E.T., Bell III, J.F., Christensen, P.R., Gorevan, S., Herkenhoff, K.E., Klingelhöfer, G., Madsen, M.B., Morris, R.V., Rieder, R., Romero, R.A.: J. Geophys. Res. 108, 8062 (2003)

    Article  Google Scholar 

  38. Knudsen, J.M., Madsen, M.B., Olsen, M., Vistisen, L., Koch, C.B., Moerup, S., Kankeleit, E., Klingelhöfer, G., Evlanov, E.N., Khromov, V.N., Mukhin, L.M., Prilutskii, O.F., Zubkov, B., Smirnov, G.V., Juchniewicz, J.: Hyperfine Interact. 68, 83 (1992)

    Article  Google Scholar 

  39. Knudsen, J.M.: Hyperfine Interact. 47, 3 (1989)

    Article  Google Scholar 

  40. Klingelhöfer, G.: Hyperfine Interact. 113, 369 (1998)

    Article  Google Scholar 

  41. Klingelhöfer, G.: In: Garcia, M., Marco, J.F., Plazaola, F. (eds.): Industrial Applications of the Mössbauer Effect, p. 369. American Institute of Physics, MD (2005)

    Google Scholar 

  42. Gummer, A.W.: Nucl. Instrum. Methods B 34, 224 (1988)

    Google Scholar 

  43. Evlanov, E.N., Frolov, V.A., Prilutski, O.F., Rodin, A.M., Veselova, G.V., Klingelhöfer, G.: Lunar Planet Sci. 24, 459 (1993)

    Google Scholar 

  44. Klingelhöfer, G., Imkeller, U., Kankeleit, E., Stahl, B.: Hyperfine Interact. 71, 1445 (1992)

    Article  Google Scholar 

  45. Teucher, R.: Miniaturisierter Mössbauerantrieb, Diploma Dissertation, University Darmstadt, Inst. f. Nuclear Physics, (1994)

    Google Scholar 

  46. Held, P., Teucher, R., Klingelhöfer, G., Foh, J., Jäger, H., Kankeleit, E.: Lunar Planet Sci. 24, 633 (1993)

    Google Scholar 

  47. Klingelhöfer, G., Fegley Jr., B., Morris, R.V., Kankeleit, E., Held, P., Evlanov, E., Priloutskii, O.: Planet Space Sci. 44, 1277 (1996)

    Article  Google Scholar 

  48. Klingelhöfer, G., Held, P., Teucher, R., Schlichting, F., Foh, J., Kankeleit, E.: Hyperfine Interact. 95, 305 (1995)

    Article  Google Scholar 

  49. Klingelhöfer, G.: In: Miglierini, M., Petridis, D. (eds.): Mössbauer Spectroscopy in Materials Science, p. 413. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  50. Riesenmann, R., Steger, J., Kostiner, E.: Nucl. Instrum. Methods 72, 109 (1969)

    Article  Google Scholar 

  51. Held, P.: MIMOS II – Ein miniaturisiertes Mößbauerspektrometer in Rückstreugeometrie zur mineralogischen Analyse der Marsoberfläche, PhD Dissertation, TU Darmstadt, Inst. Nuclear Physics (1997)

    Google Scholar 

  52. Schröder, C., Klingelhöfer, G., Morris, R.V., Rodionov, D.S., Fleischer, I., Blumers, M.: Hyperfine Interact. 182, 149 (2008)

    Article  Google Scholar 

  53. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza Jr., P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E.: Science 306, 1740 (2004)

    Article  Google Scholar 

  54. Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R., Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., Clark, B.C., Cohen, B.A., McCoy, T.J., Mittlefehldt, D.W., Shmidt, M.E., de Souza, P.A., Squyres, S.W.: J. Geophys. Res. 113, E12S42 (2008)

    Article  Google Scholar 

  55. Morris, R.V., Klingelhöfer, G.: In: Bell, J. (ed.): The Martian Surface, p. 339. Cambridge University Press, Cambridge (2008)

    Chapter  Google Scholar 

  56. Fleischer, I., Klingelhöfer, G., Schröder, C., Morris, R.V., Hahn, M., Rodionov, D., Gellert, R., de Souza, P.A.: J. Geophys. Res. 113, E06S21 (2008)

    Article  Google Scholar 

  57. Morris, R.V., Golden, D.C., Bell, J.F., Shelfer, T.D., Scheinost, A.C., Hinman, N.W., Furniss, G., Mertzman, S.A., Bishop, J.L., Ming, D.W., Allen, C.C., Britt, D.T.: J. Geophys. Res. 105, 1757 (2000)

    Article  CAS  Google Scholar 

  58. Johnson, G.R., Olhoeft, G.R.: In: Carmichael, R.S. (ed.): Handbook of Physical Properties of Rocks, vol. III, p. 1. CRC, Boca Raton (1984)

    Google Scholar 

  59. Morris, R.V., Graff, T.G., Shelfer, T.D., Bell III, J.F.: Lunar Planet Sci. 32, 1912 (2001)

    Google Scholar 

  60. Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., de Souza Jr., P.A., Ming, D.W., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. – Planets 111, E02S13 (2006)

    Article  Google Scholar 

  61. Strüder, L., Lechner, P., Leutenegger, P.: Naturwissenschaften 11, 539 (1998)

    Google Scholar 

  62. Fleischer, I., Klingelhöfer, G., Schröder, S., Rodionov, D.: Hyperfine Interact. 186, 193 (2008)

    Article  CAS  Google Scholar 

  63. Blumers, M., Bernhardt, B., Lechner, P., Klingelhöfer, G., d’Uston, C., Soltau, H., Strüder, L., Eckhardt, R., Brückner, J., Henkel, H., Girones Lopez, J., Maul, J. Nucl. Instrum. Methods A, (2010), doi: 10.1016/j.nima.2010.04.07

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Gütlich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gütlich, P., Bill, E., Trautwein, A.X. (2011). Experimental. In: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88428-6_3

Download citation

Publish with us

Policies and ethics