Advertisement

Opportunities and (in Particular) Risks of Use (Utilization Phase) of Plastic Structural Components

  • Peter EyererEmail author
  • Fabian Beilharz
  • Christof Hübner
  • Thilo Kupfer
  • Christian Ulrich
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 11)

Abstract

The previous chapters have described the opportunities and risks of plastics as materials, whereas in this chapter and the chapters, “Opportunities and Risks Involved in Designing Structural Components Made of Polymers,” “Plastics and Structural Components – The Environment and Recycling,” they will be discussed in terms of the structural components made of plastics. The opportunities often predominate due to the advantages of plastics over other materials, for example metals, ceramics, and wood. To avoid repetition, this chapter will deal primarily with the risks of the utilization phase of plastic products. The specific applications used to illustrate this are listed in the keywords.

Keywords

Automotive interiors Biodegradable plastics Condoms Designing structural components Door handles Fiber composites Interior paneling elements Joint endoprostheses Kneading clay Mats for office chairs (carpet protection) Packaging material Parts in cars Polycarbonate glasses Pressboard Rubber plates Tires Toys made of soft PVC Utilization phase 

References

  1. 1.
    Schobert K, Stark R, Strothenk H (2001) Gefahrstoffmanagement, Umweltschutz und Altgummiverwertung. In: Röthemeyer F, Sommer F (eds) Kautschuktechnologie. Hanser, München, pp 1023–1059Google Scholar
  2. 2.
    Röthemeyer F, Sommer F (eds) (2001) Kautschuktechnologie. Hanser, MünchenGoogle Scholar
  3. 3.
    Eyerer P (2010) Vorlesungsmanuskript Kunststoffkunde, 14 edn, Fraunhofer ICT, PfinztalGoogle Scholar
  4. 4.
    Sicherheitsdatenblatt gemäß EG-Richtlinie 91/155/EWG; Stand vom 30.5.2001Google Scholar
  5. 5.
    Tötsch G (1990) Polyvinylchlorid. Verlag TÜV Rheinland, KölnGoogle Scholar
  6. 6.
    Eyerer P (1986) Kunststoffe in der Gelenkendoprothetik. Z Werkstofftechnik 17:422–428CrossRefGoogle Scholar
  7. 7.
    Reckert F (2002) Biologisch abbaubare Kunststoffe. Kunststoffe 92(1):78–79Google Scholar
  8. 8.
    Käb H (2004) Die Zeichen stehen auf Wachstum. Kunststoffe 94(8):68–74Google Scholar
  9. 9.
    Kupfer Th et al (2002) Ganzheitliche Bilanzierung von Scheibensystemen für Automobilanwendungen. Vortrag 3. Beraterkreissitzung Loop, 21.2.2002, Fraunhofer ICT, PfinztalGoogle Scholar
  10. 10.
    Leroy A, Schelisch L (2005) Dachmodul am Beispiel des neuen Opel Zafira. In: VDI-K Kunststofftechnik: Kunststoffe im Automobilbau. VDI, Düsseldorf, pp 161–179. ISBN 3-18-234270-3Google Scholar
  11. 11.
    Lehner AE, Aengstenbeyster G (2005) Automobilverscheibung aus Polycarbonat – Anforderungen der Automobilindustrie und Lösungen. In: VDI-K Kunststofftechnik: Kunststoffe im Automobilbau. VDI, Düsseldorf, pp 161–179. ISBN 3-18-234270-3Google Scholar
  12. 12.
    Harbers F (2005) The green FRP recycling label. http://www.smc-alliance.com/publications.html, accessed 19 May 2005
  13. 13.
    Braunmiller et al (1998) Kreislaufgerechte Verbundmaterialteile. Fraunhofer ICT, PfinztalGoogle Scholar
  14. 14.
    Agence Rhone-Alpes pour la Maitrise des Materiaux (ed.) (2003) Guide Dechets – Valorisation des Dechets en Composites Thermodurcissables. Journee Recycomp, Le Bourget de Du Lac, 7.10.2003Google Scholar
  15. 15.
    Baumann W, Ismeier M (1998a) Kautschuk Gummi Kunststoffe 51:182Google Scholar
  16. 16.
    Baumann W, Ismeier M (1998) Kautschuk und Gummi – Daten und Fakten zum Umweltschutz. Springer, BerlinGoogle Scholar
  17. 17.
    Wommelsdorff R (1999) Gummi Fasern Kunststoffe 52:282Google Scholar
  18. 18.
    Null V (1999) Kautschuk Gummi Kunststoffe 52:799Google Scholar
  19. 19.
    Büttner R, Rakus S, Taeger E (2000) Gummi Fasern Kunststoffe 53:464Google Scholar
  20. 20.
    Büttner R (1998) Gummi Fasern Kunststoffe 51:906Google Scholar
  21. 21.
    Kamleitner B (2004) Krebs erregende Stoffe in Kondomen. Badische Neueste Nachrichten (BNN)Google Scholar

Further Reading Opportunities and Risks of Use of Plastic Structural Components

  1. Amidon GL, Lee PI (2000) Transport processes in pharmaceutical systems. Marcel Dekker, New YorkGoogle Scholar
  2. Amjad Z (2002) Water soluble polymers – solution properties and applications. Kluwer Academic, DordrechtGoogle Scholar
  3. Anderson EH (ed/chair) (2003) Industrial and commercial applications of smart structures technologies. In: Smart structures and materials 2003, San Diego, California, USA, 4–6 March 2003 (sponsored and published by SPIE – The International Society for Optical Engineering; cosponsored by ASME – American Society of Mechanical Engineers (USA) et al.; cooperating org.: Air Force Office of Scientific Research (USA) et al.)Google Scholar
  4. Arora M et al (eds) (2002) Filled elastomers drug delivery systems. Springer, BerlinGoogle Scholar
  5. Asmontas SP et al. (eds) (2001) Optical organic and inorganic materials, Vilnius, Lithuania, 16–19 Aug 2000 (organized by Semiconductor Physics Institute (Lithuania) ... [et al.]; sponsored by Lithuanian Ministry of Education and Research et al.; published by SPIE – The International Society for Optical Engineering, SPIE, 2001)Google Scholar
  6. Bar-Cohen Y (ed) (2005) Electroactive polymer actuators and devices (EAPAD). In: Smart structures and materials 2005, San Diego, California, USA, 7–10 March 2005 (sponsored and published by SPIE – The International Society for Optical Engineering et al.; coop. org.: ASME – American Society of Mechanical Engineers (USA) et al.)Google Scholar
  7. Bhowmick AK, Stephens HL (2001) Handbook of elastomers. Marcel Dekker, New YorkGoogle Scholar
  8. Biederman H (2004) Plasma polymer films. Imperial College Press, LondonGoogle Scholar
  9. Biron M (2004) Thermosets and composites: technical information for plastics users. Elsevier, AmsterdamGoogle Scholar
  10. Bode H (ed) (2002) Material aspects in automotive catalytic converters. Wiley, New YorkGoogle Scholar
  11. Chung DDL (2001) Applied materials science: applications of engineering materials in structural, electronics, thermal and other industries. CRC, Boca RatonGoogle Scholar
  12. Claude Amra et al (eds) (2005) Advances in optical thin films II, Jena, Germany, 13–15 Sept 2005 (sponsored by SPIE Europe et al.; cooperating org.: EOS – European Optical Society et al.; published by SPIE – The International Society for Optical Engineering)Google Scholar
  13. Du HH et al (ed/chair) (2005) Photonic crystals and photonic crystal fibers for sensing applications, Boston, Massachusetts, USA, 24–25 October 2005 (sponsored and published by SPIE – The International Society for Optical Engineering)Google Scholar
  14. Franse J et al. (eds) (2006) Materials for ranging systems. Springer, BerlinGoogle Scholar
  15. Farshad M (2006) Plastic pipe systems. Elsevier, AmsterdamGoogle Scholar
  16. Forsgren A (2006) Corrosion control through organic coatings. CRC, Boca RatonGoogle Scholar
  17. Goddard ED, Gruber JV (eds) (1999) Principles of polymer science and technology in cosmetics and personal care. Marcel Dekker, New YorkGoogle Scholar
  18. Goodman TD (ed) (2005) Advancements in polymer optics design, fabrication and materials. SPIE (The International Society for Optical Engineering), San Diego, California, USAGoogle Scholar
  19. Grote JG (eds) (2006) Optical materials in defence systems technology III. Stockholm, Sweden, 13–14 Sept 2006 (sponsored by SPIE Europe; published by SPIE – The International Society for Optical Engineering)Google Scholar
  20. Hollaway LC, Head PR (2001) Advanced polymer composites and polymers in the civil infrastructure. Elsevier, AmsterdamGoogle Scholar
  21. Jin GF et al (eds) (2007) Advances in optics design and precision manufacturing technologies. In: Selected, peer reviewed papers from the Asia Pacific Conference on Optics Manufacture 2007, Hong Kong, P.R. China, 11–13 January 2007, Trans Tech, ChinaGoogle Scholar
  22. Jiuhua X et al (eds) (2008) Advances in grinding and abrasive technology XIV. In: Selected papers from the 14th conference of abrasive technology in China, Nanjing, China, 26–28 Oct 2007, Trans Tech Publications, ChinaGoogle Scholar
  23. Kwon GS (2005) Polymer drug delivery systems. Taylor & Francis, LondonGoogle Scholar
  24. Kruschwitz JDT et al (eds) (2008) Advances in thin-film coatings for optical applications V, San Diego, California, USA, 11 August 2008 (sponsored and published by SPIE – The International Society for Optical Engineering)Google Scholar
  25. Lampert CM, Deb SK, Granqvist CG (eds/chair) (1995) Optical materials technology for energy efficiency and solar energy conversion XIV, San Diego, California, 12–13 July 1995, SPIEGoogle Scholar
  26. Mark Saltzman W (2001) Drug delivery engineering principles for drug therapy. Oxford University Press, LondonGoogle Scholar
  27. Marsh E (2000) Composites in infrastructure: building new markets. Elsevier, AmsterdamGoogle Scholar
  28. Ming H et al. (eds/chair) (2005) Optoelectronic devices and integration, Beijing, China, 8–11 November 2004 (sponsored and published by SPIE – The International Society for Optical Engineering et al.; co organized by Australian Optical Society et al.; supporting organizer: National Natural Science Foundation of China et al.)Google Scholar
  29. Ottenbrite RM, Kim SW (2001) Polymeric drugs and drug delivery systems. CRC, Boca RatonGoogle Scholar
  30. Piggott M (2002) Load bearing fibre composites. Kluwer Academic, DordrechtGoogle Scholar
  31. Portnoy RC (1998) Medical plastics: degradation resistance and failure analysis. Society of Plastics Engineers, USAGoogle Scholar
  32. Proceedings of 48th Annual Technical Conference, 23–28 April 2005, Denver, Colorado, USA. SVC, Society of Vacuum CoatersGoogle Scholar
  33. Radeva T (2001) Physical chemistry of polyelectrolyte. Marcel Dekker, New YorkGoogle Scholar
  34. Ranade VV, Hollinger MA (2004) Drug delivery systems. CRC, Boca RatonGoogle Scholar
  35. Romm F (2004) Microporous media: synthesis, properties and modeling. Marcel Dekker, New YorkGoogle Scholar
  36. Satchi-Fainaro R, Duncan R (2006) Polymer therapeutics I: Polymers as drugs, conjugates and gene delivery systems. Springer, BerlinGoogle Scholar
  37. Sivakumar SM et al. (eds) (2008) Smart devices. In: Modeling of material systems: an international workshop, IIT Madras, Chennai, India, 10–12 Jan 2008 (sponsored organization: India Science Lab, GM R&D et al., American Institute of Physics)Google Scholar
  38. Soutis C et al. (eds) (2005) Multiscale modelling of composite material systems: the art of predictive damage modelling. Woodhead, Cambridge, UKGoogle Scholar
  39. Thomson T (2000) Design and applications of hydrophilic polyurethanes: medical, agricultural and other applications. Technomic, LancasterGoogle Scholar
  40. Tomizuka M et al. (eds) (2007) Sensors and smart structures technologies for civil, mechanical and aerospace systems 2007, San Diego, California, USA, 19–22 March 2007 (sponsored and published by SPIE – The International Society for Optical Engineering et al.)Google Scholar
  41. Tsunemoto K et al (eds) (2009) Advances in abrasive technology XI. In: Selected, peer reviewed papers from the 11th international symposium on advances in abrasive technology, Awaji Yumebutai International Conference Center, Awaji City, Hyogo, Japan, 30 Sept 2008–3 Oct 2008, Trans Tech Publications, JapanGoogle Scholar
  42. Udd E et al. (eds/chair) (2005) Smart sensor technology and measurement systems. In: Smart structures and materials 2005, San Diego, California, USA, 7–9 March 2005 (sponsored and published by SPIE – The International Society for Optical Engineering et al.; coop. org.: ASME – American Society of Mechanical Engineers (USA) et al.)Google Scholar
  43. Varadhan VK (ed/chair) (2006) Smart electronics, MEMS, BioMEMS, and nanotechnology. In: Smart structures and materials 2006, San Diego, California, USA, 26 Feb – 1 Mar 2006 (sponsored and published by SPIE – The International Society for Optical Engineering)Google Scholar
  44. Wegman RF, Tullos TR (1992) Handbook of adhesive bonded structural repair. Noyes, Park RidgeGoogle Scholar
  45. White EV (ed/chair) (2005) Industrial and commercial applications of smart structures technologies. In: Smart structures and materials 2005, San Diego, California, USA, 7–9 March 2005 (sponsored by SPIE – The International Society for Optical Engineering)Google Scholar
  46. Willoughby D (2002) Plastic piping handbook. McGraw Hill, New YorkGoogle Scholar
  47. Wool RP, Sun XS (2004) Bio-based polymers and composites. Elsevier, AmsterdamGoogle Scholar

Structural Components Made of Thermoplastics and Thermoplastic Elastomers

  1. Bronzio JD (2006) The biomedical engineering handbook. CRC, Boca RatonGoogle Scholar
  2. Fisher JP, Mikos AG, Bronzino JD (2007) Tissue engineering. CRC, Boca RatonGoogle Scholar
  3. Galaev I, Mattiasson B (2008) Smart polymers: applications in biotechnology and biomedicine. CRC, Boca RatonGoogle Scholar
  4. Harper CA (ed) (2001) Handbook of materials for product design. McGraw-Hill, New YorkGoogle Scholar
  5. Hatakeyama T, Hatakeyama H (2004) Thermal properties of green polymers and biocomposites. Kluwer Academic, DordrechtGoogle Scholar
  6. Malmsten M (2003) Biopolymers at interfaces. Marcel Dekker, New YorkGoogle Scholar
  7. Park JB, Bronzino JD (2003) Biomaterials: principles and applications. CRC, Boca RatonGoogle Scholar
  8. Ratner BD, Hoffmann AS (1996) Biomaterial science. Academic, New YorkGoogle Scholar

Joint Endoprotheses Made of Ultrahigh Molecular Weight Polyethylene

  1. Bronzino JD (2000) Biomedical engineering handbook. CRC, Boca RatonGoogle Scholar
  2. Shalaby SW, Salz U (2007) Polymers for dental and orthopaedic applications. Taylor & Francis, LondonGoogle Scholar
  3. Eyerer P (2010) Ultrahochmolekulares Polyethylen in der Gelenkendoprothetik – Chancen oder Risiken? Vortrag auf dem 23. Biokeramiksymposium, Usedom, 25–26 Sept 2009 und AE-Hüftkurs, Ofterschwang, 4 Mär 2010Google Scholar
  4. Werner C (2006) Polymers for regenerative medicine. Springer, BerlinGoogle Scholar
  5. Yaszemski M et al (2004) Biomaterials in orthopedics. Marcel Dekker, New YorkGoogle Scholar

Biodegradable Plastics for Packaging Materials

  1. Bastioli C (1997) Rapra technology. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. CRC, Boca RatonGoogle Scholar
  2. Chasin M, Langer R (1990) Biodegradable polymers as drug delivery system. Marcel Dekker, New YorkGoogle Scholar
  3. Smith R (2005) Biodegradable polymers for industrial applications. Woodhead, Cambridge, UKGoogle Scholar
  4. Werner Th (2009) Technische Kunststoffe aus nachwachsenden Rohstoffen. Kunststoffe 10(99):54–61Google Scholar

Pressboard

  1. Deppe HJ, Ernst K (2000) Taschenbuch der Spanplattentechnik. DRW, Leinfelden-EchterdingenGoogle Scholar
  2. International Agency for Research on Cancer – Press Release No 153 15/06/2004Google Scholar
  3. Internetauftritt des VHI – Verband der Deutschen Holzwerkstoffindustrie e.V. http://www.vhi.de/
  4. Ökotest (2001) Ökotest-Ratgeber Bauen. Wohnen, Renovieren, S.18–21Google Scholar
  5. Testbericht Innenausbau/Spanplatten Öko-Haus 1/1999Google Scholar

Fiber Composite Materials

  1. Adams DF, Carlsson LA, Byron Pipes R (2003) Experimental characterization of advanced composite materials. CRC, Boca RatonGoogle Scholar
  2. Backman BF (2005) Composite structures, design, safety and innovation. Elsevier, AmsterdamGoogle Scholar
  3. Baillie C (ed) (2004) Green composites: polymer composites and the environment. Woodhead, Cambridge, UKGoogle Scholar
  4. Baltussen JJM et al (2005) Polymeric and inorganic fibers. Springer, BerlinGoogle Scholar
  5. Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, OxfordGoogle Scholar
  6. Delhaès P (ed) (2003) Fibers and composites. Taylor & Francis, New YorkGoogle Scholar
  7. Edwards JV et al (eds) (2006) Modified fibers with medical and specialty applications. Springer, BerlinGoogle Scholar
  8. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites: from nano- to macro-scale. Springer, BerlinGoogle Scholar
  9. Furne F (1999) Synthetic fibers – machines and equipment, manufacture, properties. Hanser, CincinnatiGoogle Scholar
  10. Gay D, Hoa SV, Tsai SW (2003) Composite materials: design and applications. CRC, Boca RatonGoogle Scholar
  11. Hinton MJ et al (eds) (2004) Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise. Elsevier, AmsterdamGoogle Scholar
  12. Karian HG (2003) Handbook of polypropylene and polypropylene composites. Marcel Dekker, New YorkGoogle Scholar
  13. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier, AmsterdamGoogle Scholar
  14. Lakhtakia A et al (eds/chair) (1999) Engineered nanostructural films and materials, Denver, Colorado, 22–23 July 1999 (sponsored and published by SPIE – The International Society for Optical Engineering)Google Scholar
  15. Matthews FL et al (2003) Finite element modelling of composite materials and structures. CRC, Boca RatonGoogle Scholar
  16. McIntyre JE (2005) Synthetic fibres: nylon, polyester, acrylic, polyolefin. Woodhead, Cambridge, UKGoogle Scholar
  17. Meyyappan M (ed) (2005) Carbon nanotubes: science and applications. CRC, Boca RatonGoogle Scholar
  18. Morgan P (2005) Carbon fibers and their composites. CRC, Boca RatonGoogle Scholar
  19. Nielson L, Landel RF (1994) Properties of polymer and composite. Marcel Dekker, New YorkGoogle Scholar
  20. Starr T, Starr M (1998) Thermoset resins for composites: directory and databook. Woodhead, Cambridge, UKGoogle Scholar
  21. Tong L, Mouritz AP, Bannister MK (2002) 3D fibre reinforced polymer composites. Elsevier, AmsterdamGoogle Scholar
  22. Vaseashta A et al (eds) (2005) Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology. Springer, BerlinGoogle Scholar
  23. Vasiliev VV, Morozov EV (2007) Advanced mechanics of composite materials. Elsevier, AmsterdamGoogle Scholar
  24. Zhang D et al (eds) (2007) Composite Materials V. In: Selected, peer reviewed papers from the 5th China Cross-Strait Conference on Composite Materials, Shanghai, China, 22–26 Oct 2006, Trans Tech, ChinaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Eyerer
    • 1
    Email author
  • Fabian Beilharz
    • 2
  • Christof Hübner
    • 1
  • Thilo Kupfer
    • 3
  • Christian Ulrich
    • 2
  1. 1.Fraunhofer-Institut für Chemische Technologie ICTPfinztalGermany
  2. 2.Institut für KunststofftechnikUniversität StuttgartStuttgartGermany
  3. 3.LCS Lifecycle Simulation GmbHBacknangGermany

Personalised recommendations