Advertisement

Opportunities and Risks Involved in Designing Structural Components Made of Polymers

  • Peter EyererEmail author
  • Bernd Bader
  • Fabian Beilharz
  • Jan Diemert
  • Günter Helferich
  • Christof Hübner
  • Axel Kauffmann
  • Marc Knoblauch-Xander
  • Michael Krausa
  • Ana Rodriguez
  • Stefan Tröster
  • Nina Woicke
  • Jörg Woidasky
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 11)

Abstract

In the introduction to this book, and to this chapter in particular, the polymer engineering process is presented from a holistic point of view, i.e., with all of its material sources and ramifications. In the sections that follow, this point of view will be demonstrated on the basis of a number of examples of structural component development from the recent past; some of these projects extend into the future as well. Following an introductory text, each example of component development will be supplemented by a qualitative evaluation table with explanations as required. These tables are also qualitative checklists for avoiding future errors based on the example of the specific application considered in each case.

Keywords

CAE in plastics processing Car door sills Child seat Dashboard Drinking cups Explosively embossed mold surface Foaming with microwaves Foaming with steam Fuel cell GMT vs. LFT-D Halogen-free flameproofing agents Inmold assembly Inmold lamination Material selection Microwaves in extrusion Mold design Nanocomposites Opportunities Polymer testing Polyurethane RRIM Risks Simulation Thin-wall injection molding Toothed gear Ventilator vane 

References

  1. 1.
    Du JH, Bai J, Cheng HM (2007) eXPRESS Polym Lett 5:253–273Google Scholar
  2. 2.
    Eyerer P (1996) Ganzheitliche Bilanzierung: Werkzeuge zum Planen und Wirtschaften in Kreisläufen. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Eyerer P (2010) Kunststoffkunde Vorlesungsmanuskript WS 2010/2011, 14 edn, Fraunhofer ICT, PfinztalGoogle Scholar
  4. 4.
    Hegemann B (2005) Umformverfahren in der Kunststoffverarbeitung – Warmformen. In: Eyerer P (ed) Kunststoffkunde Vorlesungsmanuskript WS 2005/2006, 13 edn, Institut für Kunststoffprüfung und Kunststoffkunde IKP, Universität StuttgartGoogle Scholar
  5. 5.
    Henning F (2001) Verfahrensentwicklung für lang- und endlosfaserverstärkte thermoplastische Sandwich-Bauteile mit geschlossenem Werkstoffkreislauf. Dissertation, Universität StuttgartGoogle Scholar
  6. 6.
    Illig A (1997) Thermoformen in der Praxis. Hanser Verlag, MünchenGoogle Scholar
  7. 7.
    Saito T, Matsushige K, Tanaka K (2002) Physica B 323:280–283Google Scholar
  8. 8.
    Schulmann A (2002) Erfahrung beim Einsatz und compoundieren nicht halogenierter Flammschutzmittel. Vortrag am fraunhofer ICT, 21 Feb 2002, PfinztalGoogle Scholar
  9. 9.
    Sonderdruck ATZ/MTZ July/August (2003) Mann+Hummel GmbHGoogle Scholar
  10. 10.
    Throne J (1996) Technology of thermoforming. Hanser Verlag, MünchenCrossRefGoogle Scholar
  11. 11.
    Tröster S (2003) Materialentwicklung und -charakterisierung für thermoplastische Sandwich-Bauteile mit geschlossenem Werkstoff-Kreislauf. Dissertation, Universität StuttgartGoogle Scholar
  12. 12.
    Tröster S, Geiger O, Henning F, Eyerer P (2004) Added value for long-fiber reinforced thermoplastic components by in-line-compounding in the LFT-D-ILC process. SPE Paper 1121, ANTEC 2004, Chicago, ILGoogle Scholar
  13. 13.
    Vaisman L, Wagner, HD, Marom G (2007) Adv Colloid Interf Sci 128–130:37–46Google Scholar

Further Reading Opportunities and Risks Involved in Designing Structural Components Made of Polymers

  1. Altmann O (ed) (2009) Kunstoff-Motorenbauteile-Forum 2009. Conference Papers, ASK AltmannGoogle Scholar
  2. Brown R (2006) Physical testing of rubber. Springer, BerlinGoogle Scholar
  3. Davis JR (ed) (2001) Surface engineering for corrosion and wear resistance. ASM International, OhioGoogle Scholar
  4. Lei MK et al (eds) (2008) Surface engineering: selected, peer reviewed papers from the fifth international conference on surface engineering (ICSE 2007). Trans Tech PublicationsGoogle Scholar
  5. Multifunktionale Anwendungen von Polymerwerkstoffen. Tagungsbericht Kompetenzzentrum Neue Materialien, Bayreuth (June 2008)Google Scholar
  6. Piggott M (2002) Load bearing fibre composites. Kluwer, Boston, MAGoogle Scholar
  7. Radeva T (2001) Physical chemistry of polyelectrolyte. Marcel Dekker, New YorkGoogle Scholar
  8. Sabin JR et al (eds) (2003) DV-X for advanced nano materials and other interesting topics in materials science. Academic Press, San Diego, CAGoogle Scholar
  9. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, BerlinGoogle Scholar
  10. Schwalm R (2007) UV coatings: basics, recent developments and new applications. Elsevier, AmsterdamGoogle Scholar
  11. Vermeeren C (ed) (2002) Around glare: a new aircraft material in context. Kluwer, DordrechtGoogle Scholar
  12. VDI Plastics Technologies (March 2009) Plastics in automotive engineering, VDI Plastics Technologies, VDI-K, MannheimGoogle Scholar
  13. Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology: sputtering of compound materials. William Andrew, New YorkGoogle Scholar

Opportunities and Risks of Material Selection

  1. Porter MC (1990) Handbook of industrial membrane technology. Noyes, Westwood, NJGoogle Scholar
  2. Rosato D, Rosato D (2003) Plastics engineered product design. Elsevier, AmsterdamGoogle Scholar
  3. Winkler PJ (ed) (2000) Materials for transportation technology. Wiley VCH, WeinheimGoogle Scholar
  4. Yamagata H (2005) The science and technology of materials in automotive engines. CRC, Boca Raton, FLCrossRefGoogle Scholar

Polymer Batteries/Electrolyte Lithium Ion Battery

  1. Glüsen A, Stolten D (2003) Membranen für Polymerelectrolytbrennstoffzellen. Chemie Ingenieur Technik 75(11)Google Scholar

Lithium Ion Batteries: Polymeric Electrolytes Versus Liquid Electrolytes

  1. Abe A, Albertsson AC, Dusek K, Jeu WH, Kausch HH, Kobayashi S, Lee KS, Leibler L, Long TE, Manners I, Möller M, Nuyken O, Terentjev EM, Voit B, Wegner G, Wiesner U, Vicent MJ (eds) (1985) Polymer membranes (Advances in Polymer Science). Springer VerlagGoogle Scholar
  2. Baker RW (2004) Membrane technology and applications. Wiley, New YorkCrossRefGoogle Scholar
  3. Sammells AF et al (eds) (2006) Nonporous inorganic membranes: for chemical processing. Wiley VCH, WeinheimGoogle Scholar
  4. The full agenda for the 9th international advanced automotive battery and EC capacitor conference, Long Beach, California, June 2009Google Scholar
  5. Yampolskii Y et al (eds) (2006) Materials science of membranes for gas and vapor separation. Wiley, ChichesterGoogle Scholar

Opportunities and Risks of Plastic Process Engineering

  1. Jauß M (1999) Erwärmung und Schweißen thermoplastischer Polymerwerkstoffe mittels Mikrowellen. Fraunhofer-Institut für Chemische Technologie ICT, PfinztalGoogle Scholar

Polymer-Components for Fuel-Cells

  1. Cotts DB, Reyes Z (1986) Conductive organic polymers for advanced applications. Noyes Data, Park Ridge, NJGoogle Scholar
  2. Rupprecht L (ed) (1999) Conductive polymers and plastics in industrial applications. Plastic Design Library, Norwich, NYGoogle Scholar
  3. Wallace GG, Spinks GM et al (2003) Conductive electroactive polymers. CRC Press, Boca Raton, FLGoogle Scholar

Inmold Assembly Versus Individual Assembly

  1. Argauer H, Eder A, Strasser K (2003) Mehrkomponenten-Spritzgießen als innovationsmotor. Kunststoffe 9:48–52Google Scholar
  2. Becker U, Vogt M, Wurst S (2004) Montage inklusive. Today-Das Arburg Magazin 27:21Google Scholar
  3. Jaroschek C (1994) Spritzgießen von moldings aus mehreren Komponenten. Augustinus-Buchhandlung, Aachen, p 115Google Scholar
  4. Jaroschek C (2004) Innovationen auf den zweiten Blick. Kunststoffe 12:39–43Google Scholar
  5. Menges G, Michaeli W, Mohren P (1999) Anleitung zum Bau von Spritzgießwerkzeugen, 5th edn. Carl Hanser Verlag, MünchenGoogle Scholar
  6. (2005) Injection Molding 2005, Erfolgreich Spritzgießen in Deutschland – Neue Wege mit der Mehrkomponententechnik. VDI-Tagung, Baden-BadenGoogle Scholar

Nanocomposites

  1. Barig A, Blome H (2001) Allgemeiner Staubgrenzwert. Teil 3: Rechtliche Bestimmungen, allgemiene Hinweise. Gefahrstoffe – Reinhaltung der Luft 61(11/12)Google Scholar
  2. Dusts, fumes and mists in the workplace: risks and their prevention. ISSA Chemistry Section, ISSA Research Section, International Symposium, June 11th–13th 2001, Toulouse, FranceGoogle Scholar
  3. Schirmer K. Potenzielle Risiken von Naomaterialien für Mensch und Umwelt. Department für Umwelttoxikologie, Eawag, Dübendorf, SchweizGoogle Scholar

Opportunities and Risks of Structural Component Design and Mold Engineering

  1. Gent AN (2001) Engineering with rubber – how to design rubber components. Hanser, MunichGoogle Scholar

Explosive Embossed Mold Surface

  1. Glassman I (1987) Combustion, 2nd edn. Academic Press, Orlando, FLGoogle Scholar
  2. National Research Council (2004) Advanced energetic materials. The National Academy, Washington, DCGoogle Scholar
  3. Spyra WPW, Winkelmann K (2004) The conversion of liquid rocket fuels. Kluwer, NetherlandsGoogle Scholar
  4. Sutton GP, Biblarz O (2001) Rocket propulsion elements, 7th edn. Wiley, New YorkGoogle Scholar
  5. Turner MJL (2005) Rocket and spacecraft propulsion principles, practice and new developments. Springer, BerlinGoogle Scholar
  6. Turns SR (2000) An introduction to combustion – concepts and application. McGraw-Hill, New YorkGoogle Scholar

CAE in Plastics Processing

  1. Bozzolo G et al (eds) (2007) Applied computational materials modeling: theory, simulation and experiment. Springer, BerlinGoogle Scholar
  2. Brinkmann Th (2009) Produkte im Wettlauf – Entwickeln und Konstruieren. Kunststoffe 10(99):122–128Google Scholar
  3. Janssens KGF et al (2007) Computational materials engineering: an introduction to microstructure evolution. Elsevier, AmsterdamGoogle Scholar
  4. Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. CRC Press, Boca Raton, FLGoogle Scholar
  5. Michaeli W et al (2009) Ein Leistsystem zum perfekten Bauteil – Pro 4 Plast. Kunststoffe 10(99):88–91Google Scholar
  6. Nassehi V (2002) Practical aspects of finite element modelling of polymer processing. Wiley, New YorkCrossRefGoogle Scholar
  7. Sidney Y (ed) (2005) Handbook of materials modeling. Springer, BerlinGoogle Scholar

Tailored Polymer Testing for Improved Simulations

  1. Schmölzer S (2009) Temperatur identifiziert – thermische analyse. Kunststoffe 10(99):96–98Google Scholar
  2. Shah V (1998) Handbook of plastics testing technology. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Eyerer
    • 1
    Email author
  • Bernd Bader
    • 1
  • Fabian Beilharz
    • 2
  • Jan Diemert
    • 1
  • Günter Helferich
    • 1
  • Christof Hübner
    • 1
  • Axel Kauffmann
    • 1
  • Marc Knoblauch-Xander
    • 3
  • Michael Krausa
    • 4
  • Ana Rodriguez
    • 5
  • Stefan Tröster
    • 1
  • Nina Woicke
    • 6
  • Jörg Woidasky
    • 1
  1. 1.Fraunhofer-Institut für Chemische Technologie ICTPfinztalGermany
  2. 2.Institut für KunststofftechnikUniversität StuttgartStuttgartGermany
  3. 3.Robert Bosch GmbHStuttgartGermany
  4. 4.REACH/BASF SELudwigshafenGermany
  5. 5.Robert Bosch GmbHWaiblingenGermany
  6. 6.2H Kunststoff GmbHAachenGermany

Personalised recommendations