Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Molecular imprinting technology, which originates from the molecular recognition phenomenon in biological systems, has been receiving much attention and already rapid developments have been achieved in recent years. A molecularly imprinted membrane is characterized by selective recognition, high binding capacity and excellent permeability. It is helpful for separation in large-scale applications and especially for the recognition of natural biomacromolecules. In this chapter the basic concept and theory of molecular imprinting are simply described for an understanding of the principles underlying the technique. Then the preparation and application of molecularly imprinted membranes are well presented and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, O’Mahony IAN, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  • Andersson LI (2000) Molecular imprinting: developments and applications in the analytical chemistry field. J Chromatogr B 745:3–13

    Article  CAS  Google Scholar 

  • Araki K, Maruyama T, Kamiya N, Goto M (2005) Mecal ion-selective membrane prepared by surface molecular imprinting. J Chromatogr B 818:141–145

    Article  CAS  Google Scholar 

  • Belokon ZS, Skorobogatova AE, Grybkova NY, Arzhakov SA, Bakeev NF, Kozlov PV, Kabanov VA (1973) Structural-mechanical aspects of crosslinked polymeric glasses deformation. Dokl Acad Sci USSR 214:1069–1071

    Google Scholar 

  • Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56

    Article  CAS  Google Scholar 

  • Brüggemann O, Haupt K, Ye L, Yilmaz E, Mosbach K (2000) New configurations and applications of molecularly imprinted polymers. J Chromatogr A 889:15–24

    Article  Google Scholar 

  • Che AF, Yang YF, Wan LS, Wu J, Xu ZK (2006) Molecular imprinting fibrous membranes of poly(acrylonitrile-co-acrylic acid) prepared by electrospinning, Chem Res Chinese U 22:390–393

    Article  CAS  Google Scholar 

  • Chen CB, Chen YJ, Zhou J, Wu CH (2006) A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid. Anal Chim Acta 569:58–65

    Article  CAS  Google Scholar 

  • Chronakis IS, Jakob A, Hagström B, Ye L (2006a) Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 22:8960–8965

    Article  CAS  Google Scholar 

  • Chronakis IS, Milosevic B, Frenot A, Ye L (2006b) Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules 39:357–361

    Article  CAS  Google Scholar 

  • Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P (2006) Supported imprinted nanospheres for the selective recognition of cholesterol. Biosens Bioelectron 21:2329–2338

    Article  CAS  Google Scholar 

  • Cormack PAG, Mosbach K (1999) Molecular imprinting: recent developments and the road ahead. React Funct Polym 41:115–124

    Article  CAS  Google Scholar 

  • Cristallini C, Ciardelli G, Barbani N, Giusti P (2004) Acrylonitrile-acrylic acid copolymer membrane imprinted with uric acid for clinical uses. Macromol Biosci 4:31–38

    Article  CAS  Google Scholar 

  • Das K, Penelle J, Rotello VM (2003) Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film. Langmuir 19:3921–3925

    Article  CAS  Google Scholar 

  • Delaney TL, Zimin D, Rahm M, Weiss D, Wolfbeis OS, Mirsky VM (2007) Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization. Anal Chem 79:3220–3225

    Article  CAS  Google Scholar 

  • Deore B, Chen ZD, Nagaoka T (2000) Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal Chem 72:3989–3994

    Article  CAS  Google Scholar 

  • Dickert FL, Hayden O, Bindeus R, Mann KJ, Blaas D, Waigmann E (2004) Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal Bioanal Chem 378:1929–1934

    Article  CAS  Google Scholar 

  • Dickey FH (1955) Specific adsorption. J Phys Chem 59:695–707

    Article  CAS  Google Scholar 

  • Donato L, Figoli A, Drioli E (2005) Novel composite poly (4-vinylpyridine)/polypropylene membranes with recognition properties for (S)-naproxen. J Pharm Biomed Anal 37:1003–1008

    Article  CAS  Google Scholar 

  • Dzgoev A, Haupt K (1999) Enantioselective molecularly imprinted polymer membranes. Chirality 11:465–469

    Article  CAS  Google Scholar 

  • Ersoz A, Denizli A, Ozcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20:2197–2202

    Article  CAS  Google Scholar 

  • Fu Y, Finklea HO (2003) Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Anal Chem 75:5387–5393

    Article  CAS  Google Scholar 

  • Han MN, Kane R, Goto M, Belfort G (2003) Discriminate surface molecular recognition sites on a microporous substrate: A new approach. Macromolecules 36:4472–4477

    Article  CAS  Google Scholar 

  • Hattori K, Hiwatari M, Iiyama C, Yoshimi Y, Kohori F, Sakai K, Piletsky SA (2004a) Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization. J Membrane Sci 233:169–173

    Article  CAS  Google Scholar 

  • Hattori K, Yoshimi Y, Ito T, Hirano K, Kohori F, Sakai K (2004b) Effect of electrostatic interactions on gate effect in molecularly imprinted polymers. Electrochemistry 72:508–510

    CAS  Google Scholar 

  • Hattori K, Yoshimi Y, Sakai K (2001) Gate effect of cellulosic dialysis membrane grafted with molecularly imprinted polymer. J Chem Eng Jpn 34:1466–1469

    Article  Google Scholar 

  • Haupt K (2003) Molecularly imprinted polymers: The next generation. Anal Chem 75:376A–383A.

    Article  CAS  Google Scholar 

  • Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  • Hilal N, Kochkodan V, Al-Khatib L, Busca G (2002) Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surf Interface Anal 33:672–675

    Article  CAS  Google Scholar 

  • Hilal N, Kochkodan V, Busca G, Kochkodan O, Atkin BP (2003) Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Sep Purif Technol 31:281–289

    Article  CAS  Google Scholar 

  • Holthoff EL, Bright FV (2007) Molecularly templated materials in chemical sensing. Anal Chim Acta 594:147–161

    Article  CAS  Google Scholar 

  • Hong JM, Anderson PE, Qian J, Martin CR (1998) Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers. Chem Mater 10:1029–1033

    Article  CAS  Google Scholar 

  • Hu XG, Li GK (2006) Application of molecular imprinting technique in sample pretreatment. Chinese J Anal Chem 34:1035–1041

    CAS  Google Scholar 

  • Kempe M, Mosbach K (1995) Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases. J Chromatogr A 691:317–323

    Article  CAS  Google Scholar 

  • Kielczynski R, Bryjak M (2005) Molecularly imprinted membranes for cinchona alkaloids separation. Sep Purif Technol 41:231–235

    Article  CAS  Google Scholar 

  • Kimaro A, Kelly LA, Murray GM (2001) Molecularly imprinted ionically permeable membrane for uranyl ion. Chem Commun 1282–1283.

    Google Scholar 

  • Klein E (2000) Affinity membranes: a 10-year review. J Membrane Sci 179:1–27

    Article  CAS  Google Scholar 

  • Kobayashi T, Fukaya T, Abe M, Fujii N (2002a) Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir 18:2866–2872

    Article  CAS  Google Scholar 

  • Kobayashi T, Murawaki Y, Reddy PS, Abe M, Fujii N (2001) Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal Chim Acta 435:141–149

    Article  CAS  Google Scholar 

  • Kobayashi T, Reddy PS, Ohta M, Abe M, Fujii N (2002b) Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin. Chem Mater 14:2499–2505

    Article  CAS  Google Scholar 

  • Kobayashi T, Wang HY, Fujii N (1995) Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membranes. Chem Lett 927–928

    Google Scholar 

  • Kobayashi T, Wang HY, Fujii N (1998) Molecular imprint membranes of poly-acrylonitrile copolymers with different acrylic acid segments. Anal Chim Acta 365:81–88

    Article  CAS  Google Scholar 

  • Kochkodan V, Hilal N, Windsor PJ, Lester E (2003) Composite microfiltration membranes imprinted with cAMP. Chem Eng Technol 26:463–468

    Article  CAS  Google Scholar 

  • Kochkodan V, Weigel W, Ulbricht M (2001) Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated alphacleavage photoinitiator. Analyst 126:803–809

    Article  CAS  Google Scholar 

  • Kochkodan V, Weigel W, Ulbricht M (2002) Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions. Desalination 149:323–328

    Article  CAS  Google Scholar 

  • Kondo Y, Yoshikawa M (2001a) Effect of solvent composition on chiral recognition ability of molecularly imprinted DIDE derivatives. Analyst 126:781–783

    Article  CAS  Google Scholar 

  • Lehmam M, Brunner H, Tovar GEM (2002) Selective separations and hydrodynamic studies: a new approach using molecularly imprinted nanosphere composite membranes. Desalination 149:315–321

    Article  Google Scholar 

  • Lin TY, Hu CH, Chon TC (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 20:75–81

    Article  CAS  Google Scholar 

  • Malaisamy R, Ulbricht M (2004) Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions. Sep Purif Technol 39:211–219

    Article  CAS  Google Scholar 

  • Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors. Anal Chem 71:1366–1370

    Article  CAS  Google Scholar 

  • Marty JD, Mauzac M (2005) Molecular imprinting: state of the art and perspectives. Adv Polym Sci 172:1–35

    CAS  Google Scholar 

  • Mathew-Krotz J, Shea KJ (1996) Imprinted polymer membranes for the selective transport of targeted neutral molecules. J Am Chem Soc 118:8154–8155

    Article  CAS  Google Scholar 

  • Mosbach K (2001) Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics). Anal Chim Acta 435:3–8

    Article  CAS  Google Scholar 

  • Panasyuk-Delaney T, Mirsky VM, Wolfbeis OS (2002) Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis 14:221–224

    Article  CAS  Google Scholar 

  • Pauling L, Campbell D (1942) The manufacture of antibodies in vitro. J Exp Med 76:211–220

    Article  CAS  Google Scholar 

  • Percival CJ, Stanley S, Braithwaite A, Newton MI, McHale G (2002) Molecular imprinted polymer coated QCM for the detection of nandrolone. Analyst 127:1024–1026

    Article  CAS  Google Scholar 

  • Piletska EV, Turner NW, Turner APF, Piletsky SA (2005) Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J Control Release 108:132–139

    Article  CAS  Google Scholar 

  • Piletsky SA, Alcock S, Turner APF (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 19:9–12

    Article  CAS  Google Scholar 

  • Piletsky SA, Dubey IY, Fedoryak DM, Kukhar VP (1990) Substrate-selective polymeric membranes: selective transfer of nucleie acid components. Biopolym Kletka 6:55–58

    Google Scholar 

  • Piletsky SA, Matuschewski H, Schedler U, Wilpert A, Piletska EV, Thiele TA, Ulbricht M (2000) Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 33:3092–3098

    Article  CAS  Google Scholar 

  • Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes a review. J Membrane Sci 157:263–278

    Article  CAS  Google Scholar 

  • Piletsky SA, Piletskaya EV, Elgersma AV, Yano K, Karube I (1995) Atrazine sensing by melecularly imprinted membranes. Biosens Bioelectron 10:959–964

    Article  CAS  Google Scholar 

  • Piletsky SA, Piletskaya EV, Panasyuk TL, El’skaya AV (1998) Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes. Macromolecules 31:2137–2140

    Article  CAS  Google Scholar 

  • Ramamoorthy M, Ulbricht M (2003) Molecular imprinting of cellulose acetatesulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique. J Membrane Sci 217:207–214

    Article  CAS  Google Scholar 

  • Robertson GP, Guiver MD, Bilodeau F, Yoshikawa M (2003) Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices. J Polym Sci Part A: Polym Chem 41:1316–1329

    Article  CAS  Google Scholar 

  • Ruckenstein E, Guo W (2004) Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules. Biotechnol Progr 20:13–25

    Article  CAS  Google Scholar 

  • Ruckert B, Hall AJ, Sellergren B (2002) Molecularly imprinted composite materials via iniferter-modified supports. J Mater Chem 12:2275–2280

    Article  CAS  Google Scholar 

  • Schmidt RH, Belmont AS, Haupt K (2005) Porogen formulations for obtaining molecularly imprinted polymers with optimized binding properties. Anal Chim Acta 542:118–124

    Article  CAS  Google Scholar 

  • Schmidt RH, Haupt K (2005) Molecularly imprinted polymer films with binding properties enhanced by the reaction-induced phase separation of a sacrificial polymeric porogen. Chem Mater 17:1007–1016

    Article  CAS  Google Scholar 

  • Schmidt RH, Mosbach K, Haupt K (2004) A simple method for spin-coating molecularly imprinted polymer films of controlled thickness and porosity. Adv Mater 16: 719–722

    Article  CAS  Google Scholar 

  • Sellergren B, Lepisto M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110:5853–5860

    Article  CAS  Google Scholar 

  • Sellergren B, Ruckert B, Hall AJ (2002) Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv. Mater 14:1204–1208

    Article  CAS  Google Scholar 

  • Sergeyeva TA, Brovko OO, Piletska EV, Piletsky SA, Goncharova LA, Karabanova LV, Sergeyeva LM, El’skaya AV (2007) Porous molecularly imprinted polymer membranes and polymeric particles. Anal Chim Acta 582:311–319

    Article  CAS  Google Scholar 

  • Sergeyeva TA, Matuschewski H, Piletsky SA, Bendig J, Schedler U, Ulbricht M (2001) Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J Chromatogr A 907:89–99

    Article  CAS  Google Scholar 

  • Sergeyeva TA, Piletsky SA, Brovko AA, Slinchenko EA, Sergeeva LM, Panasyuk TL, El’skaya AV (1999) Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 124:331–334

    Article  CAS  Google Scholar 

  • Sergeyeva TA, Piletsky SA, Piletska EV, Brovko OO, Karabanova LV, Sergeeva LM, El’skaya AV, Turner APF (2003) In situ formation of porous molecularly imprinted polymer membranes. Macromolecules 36:7352–7357

    Article  CAS  Google Scholar 

  • Shea KJ, Stoddard GJ (1991) Chemoselective targeting of fluorescence probes in polymer networks: detection of heterogeneous domains in styrene-divinylbenzene copolymers. Macromolecules 24:1207–1209

    Article  CAS  Google Scholar 

  • Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G (2006) Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J Membrane Sci 282:284–295

    Article  CAS  Google Scholar 

  • Silvestri D, Cristallini C, Ciardelli G, Giusti P, Barbani N (2005) Molecularly imprinted bioartificial membranes for the selective recognition of biological molecules. Part 2: release of components and thermal analysis. J Biomat Sci-Polym Ed 16:397–410

    Article  CAS  Google Scholar 

  • Son SH, Jegal J (2007) Chiral separation of D,L-serine racemate using a molecularly imprinted polymer composite membrane. J Appl Polym Sci 104:1866–1872

    Article  CAS  Google Scholar 

  • Suedee R, Intakong W, Dickert FL (2006) Molecularly imprinted polymer-modified electrode for on-line conductometric monotoring of haloacetic acids in chlorinated water. Anal Chim Acta 569:66–75

    Article  CAS  Google Scholar 

  • Takeda K, Abe M, Kobayashi T (2005) Molecular-imprinted nylon membranes for the permselective binding of phenylalanine as optical-resolution membrane adsorbents. J Appl Polym Sci 97:620–626

    Article  CAS  Google Scholar 

  • Takeda K, Kobayashi T (2006) Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J Membrane Sci 275:61–69

    Article  CAS  Google Scholar 

  • Takeuchia T, Haginakab J (1999) Separation and sensing based on molecular recognition using molecularly imprinted polymers. J Chromatogr B 728:1–20

    Article  Google Scholar 

  • Titirici MM, Sellergren B (2006) Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem Mater 18:1773–1779

    Article  CAS  Google Scholar 

  • Trotta F, Baggiani C, Luda MP, Drioli E, Massari T (2005) A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. J Membrane Sci 254:13–19

    Article  CAS  Google Scholar 

  • Trotta F, Drioli E, Baggiani C, Lacopo D (2002) Molecular imprinted polymeric membrane for naringin recognition. J Membrane Sci 201:77–84

    Article  CAS  Google Scholar 

  • Tsuru N, Kikuchi M, Kawaguchi H, Shiratori S (2006) A quartz crystal microbalance sensor coated with MIP for “bisphenol A” and its properties. Thin Solid Films 499:380–385

    Article  CAS  Google Scholar 

  • Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: A review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489

    CAS  Google Scholar 

  • Ulbricht M (2004) Membrane separations using molecularly imprinted polymers. J Chromatogr B 804:113–125

    Article  CAS  Google Scholar 

  • Ulbricht M, Belter M, Langenhangen U, Schmeider F, Weigel W (2002) Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations. Desalination 149:293–295

    Article  CAS  Google Scholar 

  • Ulbricht M, Malaisamy R (2005) Insights into the mechanism of molecular imprinting by immersion precipitation phase inversion of polymer blends via a detailed morphology analysis of porous membranes. J Mater Chem 15:1487–1497

    Article  CAS  Google Scholar 

  • Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  • Wang HJ, Zhou WH, Yin XF, Zhuang ZX, Yang HH, Wang XR (2006a) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128:15954–15955

    Article  CAS  Google Scholar 

  • Wang HJ, Zhou WH, Yin XF, Zhuang ZX, Yang HH, Wang XR (2006b) Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J Am Chem Soc 128:15954–15955

    Article  CAS  Google Scholar 

  • Wang HY, Kobayashi T, Fujii N (1996) Molecular imprint membranes prepared by the phase inversion precipitation technique. Langmuir 12:4850–4856

    Article  CAS  Google Scholar 

  • Wang HY, Kobayashi T, Fujii N (1997a) Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization. J Chem Technol Biol 70:355–362

    Article  CAS  Google Scholar 

  • Wang HY, Kobayashi T, Fukaya T, Fujii N (1997b) Molecular imprint membranes prepared by the phase inversion precipitation technique. 2. Influence of coagulation temperature in the phase inversion process on the encoding in polymeric membranes. Langmuir 13:5396–5400

    Article  CAS  Google Scholar 

  • Wang HY, Xia SL, Sun H, Liu YK, Cao SK, Kobayashi T (2004) Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective bindings. J Chromatogr B 804:127–134

    Article  CAS  Google Scholar 

  • Wei XL, Li X, Husson SM (2005) Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules 6:1113–1121

    Article  CAS  Google Scholar 

  • Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111

    Article  CAS  Google Scholar 

  • Whitcombe MJ, Vulfson EN (2001) Imprinted polymers. Adv Mater 13:467–478

    Article  Google Scholar 

  • Wulff G (1995) Molecular imprinting in crosslinked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed 34:1812–1832

    Article  CAS  Google Scholar 

  • Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 11:341–344

    CAS  Google Scholar 

  • Wulff G, Schauhoff S (1991) Enzyme-analog-built polymers. 27. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem 56:395–400

    Article  CAS  Google Scholar 

  • Yang L, Wei WZ, Xia JJ, Tao H (2004) Artificial receptor layer for herbicide detection based on electrosynthesized molecular imprinting technique and capacitive transduction. Anal Lett 37:2303–2319

    Article  CAS  Google Scholar 

  • Yang L, Wei WZ, Xia JJ, Tao H, Yang PH (2005) Capacitive biosensor for glutathione detection based on electropolymerized modecularly imprinted polymer and kinetic investigation of the recognition process. Electroanalysis 17:969–977

    Article  CAS  Google Scholar 

  • Ye L, Mosbach K (2001) The technique of molecular imprinting—principle, state of the art, and future aspects. J Incl Phenom Macro 41:107–113

    Article  CAS  Google Scholar 

  • Yoshikawa M (2002) Molecularly imprinted polymeric membranes. Bioseparation 10:277–286

    Article  Google Scholar 

  • Yoshikawa M, Fujisawa T, Izumi J (1999a) Molecularly imprinted polymeric membranes having EFF derivatives as a chiral recognition site. Macromol Chem Phys 200:1458–1465

    Article  CAS  Google Scholar 

  • Yoshikawa M, Fujisawa T, Izumi J, Kitao T, Sakamoto S (1998a) Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids. Anal Chim Acta 365:59–67

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J (2003) Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules. Macromol Biosci 3:487–498

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Guiver MD, Robertson GP (2001a) Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes. Macromol Mater Eng 286:52–59

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T (1997a) Enantioselective electrodialysis of amino acids with charged polar side chains through molecularly imprinted polymeric membranes containing DIDE derivatives. Polym J 29:205–210

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T (1999b) Alternative molecular imprinting, a facile way to introduce chiral recognition sites. React Funct Polym 42:93–102

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T, Koya S, Sakamoto S (1995) Molecularly imprinted polymeric membranes for optical resolution. J Membrane Sci 108:171–175

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T, Sakamoto S (1997b) Alternative molecularly imprinted polymeric membranes from a tetrapeptide residue consisting of D-or L-amino acids. Macromol Rapid Comm 18:761–767

    Article  CAS  Google Scholar 

  • Yoshikawa M, Izumi J, Ooi T, Kitao T, Guiver MD, Robertson GP (1998b) Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polym Bull 40:517–524

    Article  CAS  Google Scholar 

  • Yoshikawa M, Kawamura K, Ejima A, Aoki T, Sakurai S, Hayashi K, Watanabe K (2006a) Green polymers from Geobacillus thermodenitrificans DSM465-Candidates for molecularly imprinted materials. Macromol Biosci 6:210–215

    Article  CAS  Google Scholar 

  • Yoshikawa M, Koso K, Yonetani K, Kitamura S, Kimura S (2005) Optical resolution of racemic amino acid derivatives with molecularly imprinted membranes bearing oligopeptide tweezers. J Polym Sci Part A: Polym Chem 43:385–396

    Article  CAS  Google Scholar 

  • Yoshikawa M, Murakoshi K, Kogita T, Hanaoka K, Guiver MD, Robertson GP (2006b) Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups. Eur Polym J 42:2532–2539

    Article  CAS  Google Scholar 

  • Yoshikawa M, Ooi T, Izumi J (1999c) Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci 72:493–499

    Article  CAS  Google Scholar 

  • Yoshikawa M, Ooi T, Izumi J (2001b) Novel membrane materials having EEE derivatives as a chiral recognition site. Eur Polym J 37:335–342

    Article  CAS  Google Scholar 

  • Yoshimi Y, Ohdaira R, Iiyama C, Sakai K (2001) “Gate effect” of thin layer of molecularly-imprinted poly (methacrylic acid-co-ethyleneglycol dimethacrylate). Sensor Actuat B-Chem 73:49–53

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Molecularly Imprinted Membranes. In: Surface Engineering of Polymer Membranes. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88413-2_8

Download citation

Publish with us

Policies and ethics