Skip to main content

Membranes with Glycosylated Surface

  • Chapter
Surface Engineering of Polymer Membranes

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Sugar-containing polymers, including natural polysaccharides and synthetic glycopolymers, are highly hydrophilic and biocompatible materials. Sugars also play important roles in many biological processes. Using them as modifiers to modify the membrane surface, which is also called membrane surface glycosylation, can offer properties of both anti-non-specific adsorption and specific recognition. In this chapter we introduce some research in which membrane surface glycosylation was carried out to reduce non-specific adsorption, improve anti-coagulation properties, endow the recognition ability to lectins and even serve as an additional layer to alter the separation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsarra IA, Betigeri SS, Zhang H, Evans BA, Neau SH (2002) Molecular weight and degree of deacetylation effects on lipase-loaded chitosan bead characteristics. Biomaterials 23:3637–3644

    Article  CAS  Google Scholar 

  • Alsarra IA, Neau SH, Howard MA (2004) Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase, Biomaterials 25:2645–2655

    Article  CAS  Google Scholar 

  • Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3:1593–1608

    Article  CAS  Google Scholar 

  • Berlo AV, Ellens DJ (1988) Biocompatibility of haemodialysis membranes. Adv Exp Med Biol 238:341–358

    Google Scholar 

  • Cairo CW, Gestwicki JE, Kanai M, Kiessling LL (2002) Control of multivalent interactions by binding epitope density. J Am Chem Soc 124:1615–1619

    Article  CAS  Google Scholar 

  • Cheung AK, Chenoweth DE, Otsuka D, Henderson LW (1986) Compartmental distribution of complement activation products in artifical kidneys. Kidney Int 30:74–80

    Article  CAS  Google Scholar 

  • Deppisch R, Storr M, Buck R, Gohl H (1998) Blood material interactions at the surfaces of membranes in medical applications. Sep Purif Technol 14:241–254

    Article  CAS  Google Scholar 

  • Docci D, Delvecchio C, Turci F, Baldrati L, Gollini C (1988) Effect of different dialyzer membranes on serum angiotensin-converting enzyme during hemodialysis. Int J Artif Org 11:28–32

    CAS  Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    Article  CAS  Google Scholar 

  • Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 124:14922–14933

    Article  CAS  Google Scholar 

  • Goldstein IJ, Hollerman CE, Smith EE (1965) Protein-carbohydrate interaction. 11. inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 4:876–883

    Article  CAS  Google Scholar 

  • Hinrichs WLJ, tenHoopen HWM, Engbers GHM, Feijen J (1997) In vitro evaluation of heparinized Cuprophan hemodialysis membranes. J Biomed Mater Res 35:443–450

    Article  CAS  Google Scholar 

  • Ho CC, Zydney AL (2001) Protein fouling of asymmetric and composite microfiltration membranes. Ind Eng Chem Res 40:1412–1421

    Article  CAS  Google Scholar 

  • Holland NB, Qiu YX, Ruegsegger M, Marchant RE (1998) Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392:799–801

    Article  CAS  Google Scholar 

  • Huang RH, Chen GH, Sun MK, Hu YM, Gao CJ (2006) Studies on nanofiltration membrane formed by diisocyanate crosslinking of quaternized chitosan on poly (acrylonitrile) (PAN) support. J Membrane Sci 286:237–244

    Article  CAS  Google Scholar 

  • Kazatchkine MD, Fearon DT, Silbert JE, Austen FK (1979) Surface-associated heparin inhibits zymosaninduced complement pathway by augmenting the regulatory action of the control proteins on particlebound C3b. J Exp Med 150:1202–1215

    Article  CAS  Google Scholar 

  • Kelly ST, Zydney AL (1995) Mechanisms for BSA fouling during microfiltration. J Membrane Sci 107:115–127

    Article  CAS  Google Scholar 

  • Kennedy JF, Palva PMG, Corella MTS, Cavalcanti MSM, Coelho LCBB (1995) Lectins, versatile proteins of recognition: a review. Carbohyd Polym 26:219–230

    Article  CAS  Google Scholar 

  • Klein E (2000) Affinity membranes: a 10-year review. J Membrane Sci 179:1–27

    Article  CAS  Google Scholar 

  • Kou RQ, Xu ZK, Deng HT, Liu ZM, Seta P, Xu YY (2003) Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside. Langmuir 19:6869–6875

    Article  CAS  Google Scholar 

  • Kung FC, Chon WL, Yang MC (2006) In vitro evaluation of cellulose acetate hemodialyzer immobilized with heparin. Polym Adv Technol 17:453–462

    Article  CAS  Google Scholar 

  • Lee YC, Lee RT (1995) Carbohydrate-protein interactions: Basis of glycobiology. Acc Chem Res 28:321–327

    Article  CAS  Google Scholar 

  • Lim AL, Bai R (2003) Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J Membrane Sci 216:279–290

    Article  CAS  Google Scholar 

  • Lin WC, Tseng CH, Yang MC (2005) In-vitro hemocompatibility evaluation of a thermoplastic polyurethane membrane with surface-immobilized water-soluble chitosan and heparin. Macromol Biosci 5:1013–1021

    Article  CAS  Google Scholar 

  • Lis H, Sharon N (1998) Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  CAS  Google Scholar 

  • Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608

    Article  CAS  Google Scholar 

  • Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578

    Article  CAS  Google Scholar 

  • Maillet F, Labarre D, Kazatchkine MD (1990) The role of naturally-occurring antibodies against manmade materials in biocompatibility. Transf Sci 11:33–41

    Article  Google Scholar 

  • Mann DA, Kanai M, Maly DJ, Kiessling LL (1998) Probing low affinity and multivalent interactions with surface plasmon resonance: Ligands for concanavalin A. J Am Chem Soc 120:10575–10582

    Article  CAS  Google Scholar 

  • Musale DA, Kumar A (2000) Effects of surface crosslinking on sieving characteristics chitosan/poly(acrylonitrile) composite nanofiltration membranes. Sep Purif Technol 21:27–38

    Article  CAS  Google Scholar 

  • Nagahori N, Nishimura SI (2001) Tailored glycopolymers: Controlling the carbohydrate-protein interaction based on template effect. Biomacromolecules 2:22–24

    Article  CAS  Google Scholar 

  • Nie FQ, Xu ZK, Huang XJ, Ye P, Wu J (2003) Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of poly (ethylene glycol) for improving antifouling property and biocompatibility. Langmuir 19:9889–9895

    Article  CAS  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Article  CAS  Google Scholar 

  • Peppas N, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720

    Article  CAS  Google Scholar 

  • Steen AVD (1986) Research on dialyzers with improved biocompatibility. Clin Nephrol 26:S39–S42

    Google Scholar 

  • Tan SZ, Chen ZH, Chen ZH (2002) Preparation of polyacrylonitrile nanofiltration membrane and its separation property in the treatment of papermaking effluent. Transac China Pulp Paper 17:63–66

    CAS  Google Scholar 

  • Xu ZK, Dai QW, Wu J, Huang XJ, Yang Q (2004) Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: A novel approach. Langmuir 20:1481–1488

    Article  CAS  Google Scholar 

  • Yang Q, Hu MX, Dai ZW, Tian J, Xu ZK (2006a) Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir 22:9345–9349

    Article  CAS  Google Scholar 

  • Yang Q, Tian J, Dai ZW, Hu MX, Xu ZK (2006b) Novel photoinduced graftingchemical reaction sequence for the construction of a glycosylation surface. Langmuir 22:10097–10102

    Article  CAS  Google Scholar 

  • Yang Q, Tian J, Hu MX, Xu ZK (2007) Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Langmuir 23:6684–6690

    Article  CAS  Google Scholar 

  • Yang Q, Wan LS, Xu ZK (2008) Interaction of the glycosylated polypropylene mambrane with lectin. Chinese J Polym Sci 26:363–367

    Article  CAS  Google Scholar 

  • Yang Q, Xu ZK, Dai ZW, Wang JL, Ulbricht M (2005a) Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater 17:3050–3058

    Article  CAS  Google Scholar 

  • Yang Q, Xu ZK, Hu MX, Li JJ, Wu J (2005b) Novel sequence for generating glycopolymer tethered on a membrane surface. Langmuir 21:10717–10723

    Article  CAS  Google Scholar 

  • Yu J, Lamba NMK, Courtney JM, Whateley TL, Gaylor JDS, Lowe GDO, Ishihara K, Nakabayashi N (1994) Polymeric biomaterials: Influence of phosphorylcholine polar groups on protein adsorption and complement activation. Int J Artif Org 17:499–504

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Membranes with Glycosylated Surface. In: Surface Engineering of Polymer Membranes. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88413-2_7

Download citation

Publish with us

Policies and ethics