Skip to main content

Surface Modification by Graft Polymerization

  • Chapter
Surface Engineering of Polymer Membranes

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Membrane technologies have now been widely exploited and utilized on a large scale due to the unique separation principles of membranes. For further progress, however, membranes with favorable properties and functionabilities must be designed and prepared. Based on existing membrane materials, modification of them is necessary. Among different technologies, graft polymerization is a universal modification method for preparing a “tailored” membrane surface with desired functions. The grafted polymer chains on the membrane surface play an important role in membrane applications. In this chapter methods of graft polymerization on the membrane surfaces and the relative applications are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman S, Viinikka P, Svarfvar B, Jarvinen K, Kontturi K, Nasman J, Urtti A, Paronen P (1998) Transport of drugs across porous ion exchange membranes. J Control Release 50:153–166

    Article  CAS  Google Scholar 

  • Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Anantaraman A, Gardner C (1996) Studies on ion-exchange membranes. I. Effect of humidity on the conductivity of Nafion. J Electroanal Chem 414:115–120

    Article  Google Scholar 

  • Arico A, Baglio V, Creti P, Di Blasi A, Antonucci V, Brunea J, Chapotot A, Bozzi A, Schoemans J (2003) Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells. J Power Sources 123:107–115

    Article  CAS  Google Scholar 

  • Asai S, Watanabe K, Sugo T, Saito K (2005) Preparation of an extractant-impregnated porous membrane for the high-speed separation of a metal ion. J Chromatogr A 1094:158–164

    Article  CAS  Google Scholar 

  • Asano S, Mutou F, Ichizuri S, Li JY, Miura T, Oshima A, Katsumura Y, Washio M (2005) Fabrication of PEFC membrane based on PTFE/FEP polymer-alloy using radiation-grafting. Nucl Instrum Meth B 236:437–442

    Article  CAS  Google Scholar 

  • Assink R, Arnold JC, Hollandsworth R (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J Membrane Sci 56:143–151

    Article  CAS  Google Scholar 

  • Avlonitis S, Hambury WT, Hodgkiss T (1992) Chlorine degradation of aromatic polyamides. Desalination 85:321–334

    Article  CAS  Google Scholar 

  • Bae B, Ha HY, Kim D (2006) Nafion (R)-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. J Membrane Sci 276:51–58

    Article  CAS  Google Scholar 

  • Bae B, Kim D (2003) Sulfonated polystyrene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells. J Membrane Sci 220:75–87

    Article  CAS  Google Scholar 

  • Belfer S (2003) Modification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers: pH-dependent behavior of the modified membranes. React Funct Polym 54:155–165

    Article  CAS  Google Scholar 

  • Belfer S, Bottino A, Capannelli G (2005) Preparation and characterization of layered membranes constructed by sequential redox-initiated grafting onto polyacrylonitrile ultrafiltration membranes. J Appl Polym Sci 98:509–520

    Article  CAS  Google Scholar 

  • Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M (2004) Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. J Membrane Sci 239:55–64

    Article  CAS  Google Scholar 

  • Belfer S, Fainshtain R, Purinson Y, Kedem O (2000) Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J Membrane Sci 172:113–124

    Article  CAS  Google Scholar 

  • Belfer S, Purinson Y, Kedem O (1998) Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: An ATR-FTIR study. Acta Polym 49:574–582

    Article  CAS  Google Scholar 

  • Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers —Techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  • Bondar Y, Kim HJ, Yoon SH, Lim YJ (2004) Synthesis of cation-exchange adsorbent for anchoring metal ions by modification of poly(glycidyl methacrylate) chains grafted onto polypropylene fabric. React Funct Polym 58:43–51

    Article  CAS  Google Scholar 

  • Brack H, Büchi FN, Rota M, Scherer G (1999) Development of radiation-grafted membranes for fuel cell applications based on poly(ethylene-alt-tetrafluoroethylene). In: Pinnan I, Freeman BD (Eds.), Membrane formation and modification. ACS Symposium Series No. 744. ACS, Washington, DC, p174

    Google Scholar 

  • Büchi FN, Gupta B, Haas O, Scherer GG (1995a) Performance of differently crosslinked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cells. J Electrochem Soc 142:3044–3048

    Article  Google Scholar 

  • Büchi FN, Gupta B, Haas O, Scherer GG (1995b) Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim Acta 40:345–353

    Article  Google Scholar 

  • Carroll T, Booker NA, Meier-Haack J (2002) Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. J Membrane Sci 203:3–13

    Article  CAS  Google Scholar 

  • Cartier S, Horbett TA, Ratner BD (1995) Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. J Membrane Sci 106:17–24

    Article  CAS  Google Scholar 

  • Charcosset C (1998) Review: Purification of proteins by membrane chromatography. J Chem Technol Biot 71:95–110

    Article  CAS  Google Scholar 

  • Chen H, Palmese GR, Elabd YA (2006) Membranes with oriented polyelectrolyte nanodomains. Chem Mater 18:4875–4881

    Article  CAS  Google Scholar 

  • Chen J, Li JD, Zhao ZP, Wang D, Chen CX (2007) Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 5. Grafting of styrene in vapor phase and its application. Surf Coat Tech 201:6789–6792

    Article  CAS  Google Scholar 

  • Childs RF, Weng JF, Kim M, Dickson JM (2002) Formation of pore-filled microfiltration membranes using a combination of modified interfacial polymerization and grafting. J Polym Sci Pol Chem 40:242–250

    Article  CAS  Google Scholar 

  • Choi EY, Bae B, Moon SH (2007) Control of the fixed charge distribution in an ion-exchange membrane via diffusion and the reaction rate of the monomer. J Phys Chem B 111:6383–6390

    Article  CAS  Google Scholar 

  • Choi SH, Jeong YH, Ryoo JJ, Lee KP (2001) Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization. Radiat Phys Chem 60:503–511

    Article  CAS  Google Scholar 

  • Choi SH, Nho YC (1999) Adsorption of Co2+ by stylene-g-polyethylene membrane bearing sulfonic acid groups modified by radiation-induced graft copolymerization. J Appl Polym Sci 71:2227–2235

    Article  CAS  Google Scholar 

  • Choi SH, Park S, Nho YC (2000) Electrochemical properties of polyethylene membrane modified with carboxylic acid group. Radiat Phys Chem 57:179–186

    Article  CAS  Google Scholar 

  • Choi YJ, Moon SH, Yamaguchi T, Nakao SI (2003) New morphological control for thick, porous membranes with a plasma graft-filling polymerization. J Polym Sci Pol Chem 41:1216–1224

    Article  CAS  Google Scholar 

  • Choi YJ, Yamaguchi T, Nakao S (2000) A novel separation system using porous thermosensitive membranes. Ind Eng Chem Res 39:2491–2495

    Article  CAS  Google Scholar 

  • Chu LY, Li Y, Zhu JH, Chen WM (2005) Negatively thermoresponsive membranes with functional gates driven by zipper-type hydrogen-bonding interactions. Angew Chem Int Edit 44:2124–2127

    Article  CAS  Google Scholar 

  • Chu LY, Liang YJ, Chen WM, Ju XJ, Wang HD (2004) Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloid Surface B 37:9–14

    Article  CAS  Google Scholar 

  • Chu LY, Niitsuma T, Yamaguchi T, Nakao S (2003) Thermoresponsive transport through porous membranes with grafted PNIPAM gates. Aiche J 49:896–909

    Article  CAS  Google Scholar 

  • Chung DJ, Ito Y, Imanishi Y (1994) Preparation of porous membranes grafted with poly(spiropyran-containing methacrylate) and photocontrol of permeability. J Appl Polym Sci 51:2027–2033

    Article  Google Scholar 

  • Chuy C, Basura V, Simon E, Holdcroft S, Horsfall J, Lovell K (2000) Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes. J Electrochem Soc 147:4453–4459

    Article  Google Scholar 

  • Crivello JV, Belfort G, Yamagishi H (1995) Low fouling ultrafiltration and microfiltratia aryl polysulfone. US Patent 5468390

    Google Scholar 

  • Dell R (2000) Batteries: fifty years of materials development. Solid State Ionics 134:139–158

    Article  CAS  Google Scholar 

  • Desai SM, Singh RP (2004) Surface modification of polyethylene. Adv Polym Sci 169:231–293

    CAS  Google Scholar 

  • Dessouki AM, Taher NH, El-Arnaouty MB (1998) Gamma ray induced graft copolymerization of N-vinylpyrrolidone, acrylamide and their mixtures onto polypropylene films. Polym Int 45:67–76

    Article  CAS  Google Scholar 

  • El-Sawy NM, Al Sagheer FA (2002) Physicochemical investigation of radiation-grafted poly(acrylic acid)-graft-poly(tetrafluoroethylene-ethylene) copolymer membranes and their use in metal recovery from aqueous solution. J Appl Polym Sci 85:2692–2698

    Article  CAS  Google Scholar 

  • Evans MG, Uri N (1949) Photochemical polymerization in aqueous solution. Nature 164:404–405.

    Article  CAS  Google Scholar 

  • Fang YE, Lu XB, Cheng Q (1998a) Influence of degree of grafting and grafting temperature on the permeabilities of grafted polypropylene membranes. J Appl Polym Sci 68:83–89.

    Article  CAS  Google Scholar 

  • Fang YE, Lu XB, Wang SZ, Zhao X, Fang F (1997) Kinetics of radiation-induced graft copolymerization of vinyl acetate onto ethylene-co-propylene rubber membranes. Radiat Phys Chem 49:275–278

    Article  CAS  Google Scholar 

  • Fang YE, Ma CX, Chen Q, Lu XB (1998b) Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto chloroprene rubber membrane. II. Characterization of grafting copolymer. J Appl Polym Sci 68:1745–1750

    Article  CAS  Google Scholar 

  • Filho AAMF, Gomes AS (2006) Copolymerization of styrene onto polyethersulfone films induced by gamma ray irradiation. Polym Bull 57:415–421

    Article  CAS  Google Scholar 

  • Flint SD, Slade CT (1997) Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells. Solid State Ionics 97:299–307

    Article  CAS  Google Scholar 

  • Frahn J, Malsch G, Matuschewski H, Schedler U, Schwarz HH (2004) Separation of aromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes. J Membrane Sci 234:55–65

    Article  CAS  Google Scholar 

  • Frahn J, Malsch G, Schwarz FH (2001) Generation of a selective layer on polyacrylonitrile membrane supports for separation of aromatic/non-aromatic hydrocarbon mixtures by pervaporation. Macromol Symp 164:269–276

    Article  CAS  Google Scholar 

  • Freger V, Gilron J, Belfer S (2002) TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J Membrane Sci 209:283–292

    Article  CAS  Google Scholar 

  • Gancarz I, Poniak G, Bryjak M, Frankiewicz A (1999) Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym 50:317–326

    Article  CAS  Google Scholar 

  • Gatenholm P, Ashida T, Hoffman AS (1997) Hybrid biomaterials prepared by ozone-induced polymerization. 1. Ozonation of microporous polypropylene. J Polym Sci Pol Chem 35:1461–1467

    Article  CAS  Google Scholar 

  • Geismann C, Ulbricht M (2005) Photoreactive functionalization of poly(ethylene terephthalate) track-etched pore surfaces with “smart” polymer systems. Macromol Chem Phys 206:268–281

    Article  CAS  Google Scholar 

  • Ghosh R (2002) Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A 952:13–27

    Article  CAS  Google Scholar 

  • Gilron J, Belfer S, Väisänen P, Nyström M (2001) Effects of surface modification on antifouling and performance properties of reverse osmosis membranes. Desalination 140:167–179

    Article  CAS  Google Scholar 

  • Gineste J, Pourcelly G (1995) Polypropylene separator grafted with hydrophilic monomers for lithium batteries. J Membrane Sci 107:155–164

    Article  CAS  Google Scholar 

  • Glater J, Zachariah MR, MaCray SB, McCutchen JW (1983) RO membrane sensitivity to ozone and halogen disinfectants. Desalination 48:1–16

    Article  CAS  Google Scholar 

  • Goto M, Miyata T, Uezu K, Kajiyama T, Nakashioa F, Haraguchi T, Yamada K, Ide S, Hatanaka C (1994) Separation of rare earth metals in a hollow-fiber membrane extractor modified by plasma-graft polymerization. J Membrane Sci 96:299–307

    Article  CAS  Google Scholar 

  • Grasselli M, Carbajal ML, Yoshii F, Sugo T (2003) Radiation-induced GMA/DMAA graft copolymerization onto porous PE hollow-fiber membrane. J Appl Polym Sci 87:1646–1653

    Article  CAS  Google Scholar 

  • Gubler L, Kuhn H, Schmidt TJ, Scherer GG, Brack H-P, Simbeck K (2004) Performance and durability of membrane-electrode assemblies based on radiationgrafted FEP-g-polystyrene membranes. Fuel Cells 4:196–207

    Article  CAS  Google Scholar 

  • Gupta B, Anjum N (2001) Development of membranes by radiation grafting of acrylamide into polyethylene films: Characterization and thermal investigations. J Appl Polym Sci 82:2629–2635

    Article  CAS  Google Scholar 

  • Gupta B, Anjum N (2002) Surface structure of radiation-grafted polyethylene-g-polyacrylamide films. J Appl Polym Sci 86:1118–1122

    Article  CAS  Google Scholar 

  • Gupta B, Anjum N, Sen K (2002) Development of membranes by radiation grafting of acrylamide into polyethylene films: Properties and metal ion separation. J Appl Polym Sci 85:282–291

    Article  CAS  Google Scholar 

  • Gupta B, Büchi FN, Scherer GG (1994) Cation exchange membranes by preirradiation grafting of styrene into FEP films. I. Influence of synthesis conditions. J Polym Sci Pol Chem 32:1931–1938

    Article  CAS  Google Scholar 

  • Gupta B, Büchi FN, Scherer GG, Chapiro A (1993) Materials research aspects of organic solid proton conductors. Solid State Ionics 61:213–218

    Article  CAS  Google Scholar 

  • Gupta B, Büchi F, Staub M, Grman D, Scherer GG (1996) Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes. J Polym Sci Pol Chem 34:1837–1880

    Article  Google Scholar 

  • Gupta B, Scherer G (1994) Proton exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films. Chimia 48:127–137

    CAS  Google Scholar 

  • Hagiwara K, Yonedu S, Saito K, Shiraishi T, Sugo T, Tojyo T, Katayama E (2005) High-performance purification of gelsolin from plasma using anion-exchange porous hollow-fiber membrane. J Chromatogr B 821:153–158

    Article  CAS  Google Scholar 

  • Hegazy ESA, El-Rehim HAA, Ali AMI, Nowier HG, Aly HF (2000a) Characterization and application of radiation grafted membranes in waste treatment. Czech J Phys 50:297–308

    Article  Google Scholar 

  • Hegazy ESA, El-Rehim HAA, Khalifa NA, Atwa SM, Shawky HA (1997) Anionic/cationic membranes obtained by a radiation grafting method for use in waste water treatment. Polym Int 43:321–332

    Article  CAS  Google Scholar 

  • Hegazy ESA, El-Rehim HAA, Shawky HA (2000b) Investigations and characterization of radiation grafted copolymers for possible practical use in wastewater treatment. Radiat Phys Chem 57:85–95

    Article  CAS  Google Scholar 

  • Hickea HG, Ulbricht M, Becker M, Radosta S, Hever AG (1999) Novel enzymemembrane reactor for polysaccharide synthesis. Membrane Sci 161:239–245

    Article  Google Scholar 

  • Hietala S, Holmberg S, Näsman J, Ostrovskii D, Paronen M, Serimaa R, Sundholm F, Torell L, Torkkeli M (1997) The state of water in styrene-grafted and sulfonated poly (vinylidene fluoride) membranes. Angew Makromol Chem 253:151–167

    Article  CAS  Google Scholar 

  • Hietala S, Paronen M, Holmberg S, Näsman J, Juhanoja J, Karjalainen M, Serimaa R, Toivola M, Lehtinen T, Parovuori K, et al. (1999) Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride). J Polym Sci Pol Chem 37:1741–1753

    Article  CAS  Google Scholar 

  • Hilal N, Kochkodan V, Al-Khatib L, Levadna T (2004) Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli. Desalination 167:293–300

    Article  CAS  Google Scholar 

  • Hirotsu T (1987) Graft polymerized membranes of methacrylic acid by plasma for water-ethanol permseparation. Ind Eng Chem Res 26:1287–1290

    Article  CAS  Google Scholar 

  • Holmberg S, Holmlund P, Nicolas R, Wilen CE, Kallio T, Sundholm G, Sundholm F (2004) Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization. Macromolecules 37:9909–9915

    Article  CAS  Google Scholar 

  • Holmberg S, Holmlund P, Wilen CE, Kallio T, Sundholm G, Sundholm F (2002) Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques. J Polym Sci Pol Chem 40:591–600

    Article  CAS  Google Scholar 

  • Holmberg S, Lehtinen T, Naesman J, Ostrovskii D, Paronen M, Serimaa R, Sundholm F, Sundholm G, Torell L, Torkkeli M (1996) Structure and properties of sulfonated poly[(vinylidene fluoride)-g-styrene] porous membranes. J Mater Chem 6:1309–1317

    Article  CAS  Google Scholar 

  • Holmberg S, Naesman JH, Sundholm F (1998) Synthesis and properties of sulfonated and crosslinked poly[(vinylidene fluoride)-graft-styrene] membranes. Polym Advan Technol 9:121–127

    Article  CAS  Google Scholar 

  • Horsfall J, Lovell K (2001) Fuel cell performance of radiation grafted sulfonic acid membranes. Fuel Cells 1:186–191

    Article  CAS  Google Scholar 

  • Hsiue GH, Yang JM, Wu RL (1988) Preparation and properties of a biomaterial: HEMA grafted SBS by gamma-ray irradiation. J Biomed Mater Res 22:405–415

    Article  CAS  Google Scholar 

  • Hsueh CL, Peng YJ, Wang CC, Chen CY (2003) Bipolar membrane prepared by grafting and plasma polymerization. J Membrane Sci 219:1–13

    Article  CAS  Google Scholar 

  • Hu MX, Yang Q, Xu ZK (2006) Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators. J Membrane Sci 285:196–205

    Article  CAS  Google Scholar 

  • Huang J, Wang XL, Qi WS, Yu XH (2002) Temperature sensitivity and electrokinetic behavior of a N-isopropylacrylamide grafted microporous polyethylene membrane. Desalination 146:345–351

    Article  CAS  Google Scholar 

  • Hwang GJ, Ohya H (1996) Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. J Membrane Sci 120:55–67

    Article  CAS  Google Scholar 

  • Hwang GJ, Ohya H (1997) Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. J Membrane Sci 132:55–61

    Article  CAS  Google Scholar 

  • Ishigaki I, Sugo T, Senoo K, Takayama T, Machi S, Okamoto J, Okada T (1981) Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene. Radiat Phys Chem 18:899–905

    CAS  Google Scholar 

  • Ito T, Hioki T, Yamaguchi T, Shinbo T, Nakao S, Kimura S (2002) Development of a molecular recognition ion gating membrane and estimation of its pore size control. J Am Chem Soc 124:7840–7846

    Article  CAS  Google Scholar 

  • Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119:1619–1623

    Article  CAS  Google Scholar 

  • Ito Y, Ito T, Takaba H, Nakao S (2005) Development of gating membranes that are sensitive to the concentration of ethanol. J Membrane Sci 261:145–151

    Article  CAS  Google Scholar 

  • Iwata H, Hirata I, Ikada Y (1998) Atomic force microscopic analysis of a porous membrane with pH-sensitive molecular valves. Macromolecules 31:3671–3678

    Article  CAS  Google Scholar 

  • Jimbo T, Higa M, Minoura N, Tanioka A (1998a) Surface characterization of poly (acrylonitrile) membranes graft-polymerized with ionic monomers as revealed by zeta potential measurement. Macromolecules 31:1277–1284

    Article  CAS  Google Scholar 

  • Jimbo T, Tanioka A, Minoura N (1998b) Characterization of an amphotericcharged layer grafted to the pore surface of a porous membrane. Langmuir 14:7112–7118

    Article  CAS  Google Scholar 

  • Jimbo T, Tanioka A, Minoura N (1998c) Comparison of surface and net charge densities of poly(acrylonitrile) membranes grafted with ionic monomers: Hydrophilic and hydrophobic effects of graft chain. J Colloid Interf Sci 204:336–341

    Article  CAS  Google Scholar 

  • Jimbo T, Tanioka A, Minoura N (1999) Fourier transform infrared spectroscopic study of flat surfaces of amphoteric-charged poly(acrylonitrile) membranes: Attenuated total reflection mode. Langmuir 15:1829–1832

    Article  CAS  Google Scholar 

  • Kabsch-Korbutowicz M, Majewska-Nowak K, Winnicki T (1999) Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination 126:179–185

    Article  CAS  Google Scholar 

  • Kaeselev B, Pieracci J, Belfort G (2001) Photoinduced grafting of ultrafiltration membranes: comparison of poly(ether sulfone) and poly(sulfone). J Membrane Sci 194:245–261

    Article  CAS  Google Scholar 

  • Kai T, Goto H, Shimizu Y, Yamaguchi T, Nakao SI, Kimura S (2005) Development of crosslinked plasma-graft filling polymer membranes for the reverse osmosis of organic liquid mixtures. J Membrane Sci 265:101–107

    Article  CAS  Google Scholar 

  • Kai T, Tsuru T, Nakao S, Kimura S (2000) Preparation of hollow-fiber membranes by plasma-graft filling polymerization for organic-liquid separation. J Membrane Sci 170:61–70

    Article  CAS  Google Scholar 

  • Kallio T, Lundström M, Sundholm G, Walsby N, Sundholm F (2002) Electrochemical characterization of radiation-grafted ion-exchange membranes based on different matrix polymers. J Appl Electrochem 32:11–18

    Article  CAS  Google Scholar 

  • Kang JS, Shim JK, Huh H, Loo YM (2001) Colloidal adsorption of bovine serum albumin on porous polypropylene-g-poly(2-hydroxyethyl methacrylate) membrane. Langmuir 17:4352–4359

    Article  CAS  Google Scholar 

  • Karlsson JO, Gatenholm P (1996) Solid-supported wettable hydrogels prepared by ozone induced grafting. Polymer 37:4251–4256

    Article  CAS  Google Scholar 

  • Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:209–259

    Article  CAS  Google Scholar 

  • Kawai T, Saito K, Lee W (2003) Protein binding to polymer brush, based on ionexchange, hydrophobic, and affinity interactions. J Chromatogr B 790:131–142

    Article  CAS  Google Scholar 

  • Kilduff JE, Mattaraj S, Pieracci JP, Belfort G (2000) Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter. Desalination 132:133–142

    Article  CAS  Google Scholar 

  • Kim JH, Ha SY, Nam SY, Rhim JW, Baek KH, Lee YM (2001) Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membrane Sci 186:97–107

    Article  CAS  Google Scholar 

  • Kim M, Saito K (2000) Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate on to porous hollow-fiber membranes with different pore sizes. Radiat Phys Chem 57:167–172

    Article  CAS  Google Scholar 

  • Kiyohara S, Kim M, Toida Y, Saito K, Sugita K, Sugo T (1997) Selection of a precursor monomer for the introduction of affinity ligands onto a porous membrane by radiation-induced graft polymerization. J Chromatogr A 758: 209–215

    Article  CAS  Google Scholar 

  • Koehler JA, Ulbricht M, Belfort G (2000) Intermolecular forces between a protein and a hydrophilic modified polysulfone film with relevance to filtration. Langmuir 16: 10419–10427

    Article  CAS  Google Scholar 

  • Koguma I, Sugita K, Saito K, Sugo T (2000) Multilayer binding of proteins to polymer chains grafted onto porous hollow-fiber membranes containing different anion-exchange groups. Biotechnol Progr 16: 456–461

    Article  CAS  Google Scholar 

  • Kubota N, Konno Y, Saito K, Sugita K, Watanabe K, Sugo T (1997a) Module performance of anion-exchange porous hollow-fiber membranes for high-speed protein recovery. J Chromatogr A 782: 159–165

    Article  CAS  Google Scholar 

  • Kubota N, Kounosu M, Saito K, Sugita K, Watanabe K, Sugo T (1997b) Repeated use of a hydrophobic ligand-containing porous membrane for protein recovery. J Membrane Sci 134: 67–73

    Article  CAS  Google Scholar 

  • Kuroda S, Mita I, Obata K, Tanaka S (1990) Degradation of aromatic polymers: part IV. Effect of temperature and light intensity on the photodegradation of polyethersulfon. Polym Degr Stab 27: 257

    Article  CAS  Google Scholar 

  • Kubota N, Miura S, Saito K, Sugita K, Watanabe K, Sugo T (1996) Comparison of protein adsorption by anion-exchange interaction onto porous hollow-fiber membrane and gel bead-packed bed. J Membrane Sci 117: 135–142

    Article  CAS  Google Scholar 

  • Larminie J, Dicks A (2000) Fuel cell systems explained John Wiley & Sons, New York

    Google Scholar 

  • Lawler J, Charlesby A (1980) Grafting of acrylic acid onto polyethylene using radiation as initiator. Radiat Phys Chem 15: 595–602

    Article  CAS  Google Scholar 

  • Lee W, Saito K, Furusaki S, Sugo T (1997) Capture of microbial cells on brush-type polymeric materials bearing different functional groups. Biotechnol Bioeng 53: 523–528

    Article  CAS  Google Scholar 

  • Lee W, Saito K, Furusaki S, Sugo T, Makuuchi K (1996) Adsorption kinetics of microbial cells onto a novel brush-type polymeric material prepared by RIGP. Biotechnol Progr 12: 178–183

    Article  CAS  Google Scholar 

  • Lee YM, Ihm SY, Shim JK, Kim JH (1995) Preparation of surface-modified stimuli-responsive polymeric membranes by plasma and ultraviolet grafting methods and their riboflavin permeation. Polymer 36: 81–85

    Article  CAS  Google Scholar 

  • Lee YM, Shim JK (1997) Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer 38: 1227–1232

    Article  CAS  Google Scholar 

  • Li JY, Ichizuri S, Asano S, Mutou F, Ikeda S, Iida M, Miura T, Oshima A, Tabata Y, Washio M (2005a) Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes. Nucl Instrum Meth B 236: 333–337

    Article  CAS  Google Scholar 

  • Li JY, Ichizuri S, Asano S, Mutou F, Ikeda S, Iida M, Miura T, Oshima A. Tabata Y, Washio M (2005b) Surface analysis of the proton exchange membranes prepared by pre-irradiation induced grafting of styrene/divinylbenzene into crosslinked thin PTFE membranes. Appl Surf Sci 245: 260–272

    Article  CAS  Google Scholar 

  • Li JY, Ichizuri S, Asano S, Mutou F, Ikeda S, Iida M, Miura T, Oshima A, Tabata Y, Washio M (2006a) Preparation of ion exchange membranes by preirradiation induced grafting of styrene/divinylbenzene into crosslinked PTFE films and successive sulfonation. J Appl Polym Sci 101: 3587–3599

    Article  CAS  Google Scholar 

  • Li JY, Muto F, Miura T, Oshima A, Washio M, Ikeda S, Iida M, Tabata Y, Matsuura C, Katsumura Y (2006b) Improving the properties of the proton exchange membranes by introducing alpha-methylstyrene in the pre-irradiation induced graft polymerization. Eur Polym J 42: 1222–1228

    Article  CAS  Google Scholar 

  • Li JY, Sato K, Ichiduri S, Asano S, Ikeda M, Iida M, Oshima A, Tabata Y, Washio M (2004) Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting condition. Eur Polym J 40: 775–783

    Article  CAS  Google Scholar 

  • Li JY, Sato K, Ichizuri S, Asano S, Ikeda S, Iida M, Oshima A, Tabata Y, Washio M (2005c) Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films. Eur Polym J 41: 547–555

    Article  CAS  Google Scholar 

  • Li YP, Liu L, Fang YE (2003) Plasma-induced grafting of hydroxyethyl methacrylate (HEMA) onto chitosan membranes by a swelling method. Polym Int 52: 285–290

    Article  CAS  Google Scholar 

  • Liang L, Feng XD, Peurrung L, Viswanthan V (1999) Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J Membrane Sci 162: 235–246

    Article  CAS  Google Scholar 

  • Lightfoot EN, Moscariello JS (2004) Bioseparations. Biotechnol Bioeng 87: 259–273

    Article  CAS  Google Scholar 

  • Liu F, Du CH, Zhu BK, Xu YY (2007) Surface immobilization of polymer brushes onto porous poly (vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer 48: 2910–2918

    Article  CAS  Google Scholar 

  • Liu ZM, Xu ZK, Wang JQ, Wu J, Fu JJ (2004) Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur Polym J 40: 2077–2087

    Article  CAS  Google Scholar 

  • Liu ZM, Xu ZK, Wang JQ, Yang Q, Wu J, Seta P (2003) Surface modification of microporous polypropylene membranes by the grafting of poly (gamma-stearyl-L-glutamate) Eur Polym J 39: 2291–2299

    Article  CAS  Google Scholar 

  • Ma H, Davis RH, Bowman CX (2000) A novel sequential photoinduced living graft polymerization. Macromolecules 33: 331–335

    Article  CAS  Google Scholar 

  • Ma ZW, Ramakrishna S (2006) Ce(IV)-induced graft copolymerization of methacrylic acid on electrospun polysulphone nonwoven fiber membrane. J Appl Polym Sci 101: 3835–3841.

    Article  CAS  Google Scholar 

  • Maartens A, Swart P, Jacobs EP (2000) Membrane pretreatment: a method for reducing fouling by natural organic matter. J Colloid Interf Sci 221: 137–142

    Article  CAS  Google Scholar 

  • Matsuyama H, Teramoto M, Iwai K (1994) Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2. J Membrane Sci 93: 237–244

    Article  CAS  Google Scholar 

  • Matsuyama H, Teramoto M, Sakakura H (1996) Selective permeation of CO2 through poly (2-(N, N-dimethyl) aminoethyl methacrylate) membrane prepared by plasma-graft polymerization technique. J Membrane Sci 114: 193–200

    Article  CAS  Google Scholar 

  • Mika AM, Childs RF, Dickson JM (1999) Chemical valves based on poly (4-vinylpyridine)-filled microporous membranes. J Membrane Sci 153: 45–56

    Article  CAS  Google Scholar 

  • Mika AM, Childs RF, Dickson JM, McCarry BE, Gagnon DR (1995) A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity. J Membrane Sci 108: 37–56

    Article  CAS  Google Scholar 

  • Mika AM, Childs RF, West M, Lott JNA (1997) Poly (4-vinylpyridine)-filled microfiltration membranes: physicochemical properties and morphology. J Membrane Sci 136: 221–232

    Article  CAS  Google Scholar 

  • Mino G, Kaizerman S, Rasmussen E (1958) Oxidation of pinacol by ceric sulfate. J Polym Sci 31: 242–247

    Article  Google Scholar 

  • Mishima S, Kaneoka H, Nakagawa T (1999) Characterization and pervaporation of chlorinated hydrocarbon-water mixtures with fluoroalkyl methacrylategrafted PDMS membrane. J Appl Polym Sci 71: 273–287

    Article  CAS  Google Scholar 

  • Mishima S, Kaneoka H, Nakagawa T (2001) Characterization for graft polymerization of alkyl methacrylate onto polydimethylsiloxane membranes by electron beam and their permselectivity for volatile organic compounds. J Appl Polym Sci 79: 203–213

    Article  CAS  Google Scholar 

  • Mishima S, Nakagawa T (1999) Plasma-grafting of fluoroalkyl methacrylate onto PDMS membranes and their VOC separation properties for pervaporation. J Appl Polym Sci 73: 1835–1844

    Article  CAS  Google Scholar 

  • Mishima S, Nakagawa T (2003) Characterization of graft polymerization of fluoroalkyl methacrylate onto PDMS hollow-fiber membranes and their permselectivity for volatile organic compounds. J Appl Polym Sci 88: 1573–1580

    Article  CAS  Google Scholar 

  • Miyoshi K, Saito K, Shiraishi T, Sugo T (2005) Introduction of taurine into polymer brush grafted onto porous hollow-fiber membrane. J Membrane Sci 264: 97–103

    Article  CAS  Google Scholar 

  • Nasef MM, Hegazy ESA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29: 499–561

    Article  CAS  Google Scholar 

  • Nasef MM, Saidi H (2003) Preparation of crosslinked cation exchange membrane by radiation grafting of styrene/divinylbenzene mixtures onto PFA films. J Membrane Sci 216: 27–38

    Article  CAS  Google Scholar 

  • Nasef MM, Saidi H, Nor HM, Ooi MF (2000a) Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes. J Appl Polym Sci 76: 1–11

    Article  CAS  Google Scholar 

  • Nasef MM, Saidi H, Nor HM, Ooi MF (2000b) Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluoroethy-Iene-co-hexafluoropropylene) films. II. Properties of the sulfonated membranes. J Appl Polym Sci 78: 2443–2453

    Article  CAS  Google Scholar 

  • Nasef MM, Saidi H, Nor HM, Ooi MF (2000c) Radiation-induced grafting of styrene onto poly (tetrafluoroethylene) (PTFE) films. Part II. Properties of the grafted and sulfonated membranes. Polym Int 49: 1572–1579

    Article  CAS  Google Scholar 

  • Nasef MM, Suppiah RR, Dahlan KZM (2004) Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics 171: 243–249

    Article  CAS  Google Scholar 

  • Nasef MM, Zubir NA, Ismail AF, Khayet M, Dahlan KZM, Saidi H, Rohani R, Ngah TIS, Sulaiman NA (2006) PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol. J Membrane Sci 268: 96–108

    Article  CAS  Google Scholar 

  • Nayak A, Liu HW, Belfort G (2006) An optically reversible switching membrane surface. Angew Chem Int Edit 45:4094–4098

    Article  CAS  Google Scholar 

  • Nouzaki K, Nagata M, Arai J, Idemoto Y, Koura N, Yanagishita H, Negishi H, Kitamoto D, Ikegami T, Haraya K (2002) Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment. Desalination 144:53–59

    Article  CAS  Google Scholar 

  • Odian G, Henry R, Koeing R, Mangaraj D, Trung D, Chao B, Derman A (1975) Effect of diffusion on rates and molecular weights in graft polymerization. J Polym Sci Polym Chem Edit 13:623–643

    Article  CAS  Google Scholar 

  • Odian G, Keusch P, Raffo J, Tufano J (1968) A study of the synthesis of hemodialysis membranes. RAI Research Corporation, Progress Report, Pb 182990

    Google Scholar 

  • Ohya H, Minamihira K, Hwang GJ, Kuwahara T, Kang AS, Aihara M, Negishi Y (1995) Studies on membrane for redox flow battery. IX. Crosslinking of tile membrane by the electron radiation and durability of the membrane. Denkikagaku 63:1033–1039

    CAS  Google Scholar 

  • Okamoto J (1987) Radiation synthesis of functional polymer. Radiat Phys Chem 29:469–475

    CAS  Google Scholar 

  • Okamura A, Itayagoshi M, Hagiwara T, Yamaguchi M, Kanamori T, Shinbo T, Wang PC (2005) Poly (N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation. Biomaterials 26:1287–1292

    Article  CAS  Google Scholar 

  • Okamura D, Saito K, Sugita K, Tamada M, Sugo T (2002) Soivent effect on protein binding by polymer brush grafted onto porous membranes. J Chromatogr A 953:101–109

    Article  CAS  Google Scholar 

  • Oster G, Yang NL (1968) Photopolymerization of vinyl monomers. Chem Rev 68:125–151

    Article  CAS  Google Scholar 

  • Ozawa I, Saito K, Sugita K, Sato K, Akiba M, Sugo T (2000) High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes. J Chromatogr A 888:43–49

    Article  CAS  Google Scholar 

  • Peng T, Cheng YL (1998) Temperature-responsive permeability of porous PNIP-AAm-g-PE membranes. J Appl Polym Sci 70:2133–2142

    Article  CAS  Google Scholar 

  • Peng T, Cheng YL (2001) PNIPAAm and PMAA co-grafted porous PE membranes: living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer 42:2091–2100

    Article  CAS  Google Scholar 

  • Pieracci J, Wood DW, Crivello JV, Belfort G (2000) UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: Comparison of dip versus immersion modification techniques. Chem Mater 12:2123–2133

    Article  CAS  Google Scholar 

  • Pieracci J, Crivello JV, Belfort G (2002a) Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes. J Membrane Sci 202:1–16

    Article  CAS  Google Scholar 

  • Pieracci J, Crivello JV, Belfort G (2002b) UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths. Chem Mater 14:256–265

    Article  CAS  Google Scholar 

  • Prater K (1994) Polymer electrolyte fuel cells: a review of recent developments. Power Sources 51:129–144

    Article  CAS  Google Scholar 

  • Qiu CQ, Nguyen QT, Ping ZH (2007) Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes. J Membrane Sci 295:88–94

    Article  CAS  Google Scholar 

  • Qiu CQ, Xu F, Nguyen QT, Ping ZH (2005) Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV-induced grafting method. J Membrane Sci 255:107–115

    Article  CAS  Google Scholar 

  • Qiu CQ, Zhang QTNL, Ping ZH (2006) Nanofiltration membrane preparation by photomodification of cardo polyetherketone ultrafiltration membrane. Sep Purif Technol 51:325–331

    Article  CAS  Google Scholar 

  • Risen JW (1996) Applications of ionomers. In: Schuck S (Ed.), Ionomers: characterization, theory and applications. CRC Press, New Jersey, p281

    Google Scholar 

  • Roper DK, Lightfoot EN (1995) Separation of biomolecules using adsorptive membranes. J Chromatogr A 702:3–26

    Article  CAS  Google Scholar 

  • Rouilly M, Koetz E, Haas O, Scherer G, Chapiro A (1993) Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films. Synthesis and characterization. J Membrane Sci 81:89–95

    Article  CAS  Google Scholar 

  • Safranj A, Omichi H, Okamoto J (1986) Radiation-induced grafting of methyl-α,β,β-trifluoroacrylate onto tetrafluoroethylene-propylene copolymer. Radiat Phys Chem 27:447–453

    CAS  Google Scholar 

  • Sato K, Ikeda S, Iida M, Oshima A, Tabata Y, Washio M (2003) Study on polyelectrolyte membrane of crosslinked PTFE by radiation-grafting. Nucl Instrum Meth B 208:424–428

    Article  CAS  Google Scholar 

  • Saito K, Saito K, Sugita K, Tamada M, Sugo T (2002a) Cation-exchange porous hollow-fiber membranes prepared by radiation-induced cografting of GMA and EDMA which improved pure water permeability and sodium ion adsorptivity. Ind Eng Chem Res 41:5686–5691

    Article  CAS  Google Scholar 

  • Saito K, Saito K, Sugita K, Tamada M, Sugo T (2002b) Convection-aided collection of metal ions using chelating porous flat-sheet membranes. J Chromatogr A 954:277–283

    Article  CAS  Google Scholar 

  • Saito K, Tsuneda S, Kim M, Kubota N, Sugita K, Sugo T (1999) Radiation-induced graft polymerization is the key to develop high-performance functional materials for protein purification. Radiat Phys Chem 54:517–525

    Article  CAS  Google Scholar 

  • Saito N, Yamashita S (1998) Characterization of surface-charge-mosaic-modified ultrafiltration membranes prepared by laser-induced surface graft polymerization. J Appl Polym Sci 67:1141–1149

    Article  CAS  Google Scholar 

  • Saito N, Yamashita S, Matsuda T (1997) Laser-irradiation-induced surface graft polymerization method. J Polym Sci Pol Chem 35:747–750

    Article  CAS  Google Scholar 

  • Saito T, Kawakita H, Uezu K, Tsuneda S, Hirata A, Saito K, Tamada M, Sugo T (2004) Structure of polyol-ligand-containing polymer brush on the porous membrane for antimony(III) binding. J Membrane Sci 236:65–71

    Article  CAS  Google Scholar 

  • Sasagawa N, Saito K, Sugita K, Kunori S, Sugo T (1999) Ionic crosslinking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode. J Chromatogr A 848:161–168

    Article  CAS  Google Scholar 

  • Shim JK, Lee YB, Lee YM (1999) pH-dependent permeation through polysulfone ultrafiltration membranes prepared by ultraviolet polymerization technique. J Appl Polym Sci 74:75–82

    Article  CAS  Google Scholar 

  • Shim JK, Na HS, Lee YM, Huh H, Nho YC (2001) Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics. J Membrane Sci 190:215–226

    Article  CAS  Google Scholar 

  • Singh N, Husson SM, Zdyrko B, Luzinov I (2005) Surface modification of microporous PVDF membranes by ATRP. J Membrane Sci 262:81–90

    Article  CAS  Google Scholar 

  • Siu A, Pivovar B, Horsfall J, Lovell KV, Holdcroft S (2006) Dependence of methanol permeability on the nature of water and the morphology of graft copolymer proton exchange membranes. J Polym Sci Pol Phys 44:2240–2252

    Article  CAS  Google Scholar 

  • Son HD, Cho MS, Nam JD, Cho SM, Chung CH, Choi HG, Lee Y (2006) Depression of methanol-crossover using multilayer proton conducting membranes prepared by layer-by-layer deposition onto a porous polyethylene film. J Power Sources 163:66–70

    Article  CAS  Google Scholar 

  • Steinert V, Reinhardt S, Werner K (1999) Poly(propene-co-maleic acid) with lateral perester groups as initiator in the emulsion polymerization of styrene. J Polym Sci Pol Chem 37:2045–2054

    Article  CAS  Google Scholar 

  • Susanto H, Balakrishnan M, Ulbricht M (2007) Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes. J Membrane Sci 288:157–167

    Article  CAS  Google Scholar 

  • Taher NH, Dessouki AM, Khalil FH, ElArnaouty MB (1996) Preparation and properties of cationic membranes obtained by radiation grafting of vinyl monomers onto poly(tetrafluoroethylene-perfluoropropylvinyl ether(PFA) films. Polym Int 41:383–389

    Article  CAS  Google Scholar 

  • Taniguchi M, Belfort G (2004) Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. J Membrane Sci 231:147–157

    Article  CAS  Google Scholar 

  • Taniguchi M, Kilduff JE, Belfort G (2003a) Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. J Membrane Sci 222:59–70

    Article  CAS  Google Scholar 

  • Taniguchi M, Pieracci J, Samsonoff WA, Belfort G (2003b) UV-assisted graft polymerization of synthetic membranes: Mechanistic studies. Chem Mater 15:3805–3812

    Article  CAS  Google Scholar 

  • Teng MY, Lee KR, Liaw DJ, Lin YS, Lai JY (2000) Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation. Eur Polym J 36:663–672

    Article  CAS  Google Scholar 

  • Terada A, Yuasa A, Tsuneda S, Hirata A, Katakai A, Tamada M (2005) Elucidation of dominant effect on initial bacterial adhesion onto polymer surfaces prepared by radiation-induced graft polymerization. Colloid Surface B 43:99–107

    Article  CAS  Google Scholar 

  • Tsuneda S, Endo T, Saito K, Sugita K, Horie K, Yamashita T, Sugo T (1998) Fluorescence study on the conformational change of an amino group-containing polymer chain grafted onto a polyethylene microfiltration membrane. Macro-molecules 31:366–370

    CAS  Google Scholar 

  • Tsuneda S, Saito K, Sugo T, Makuuchi K (1995) Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization. Radiat Phys Chem 46:239–245

    Article  CAS  Google Scholar 

  • Tu CY, Chen CP, Wang YC, Li CL, Tsai HA, Lee KR, Lai JY (2004) Acrylamide plasma-induced polymerization onto expanded poly(tetrafluoroethylene) membrane for aqueous alcohol mixture vapor permeation separation. Eur Polym J 40:1541–1549

    Article  CAS  Google Scholar 

  • Ulbricht M (1996) Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities. React Funct Polym 31:165–177

    Article  CAS  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

    Article  CAS  Google Scholar 

  • Ulbricht M, Schwarz HH (1997) Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation. J Membrane Sci 136:25–33

    Article  CAS  Google Scholar 

  • Ulbricht M, Matuschewski H, Oechel A, Hicke HG (1996a) Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. J Membrane Sci 115:31–47

    Article  CAS  Google Scholar 

  • Ulbricht M, Oechel A, Lehmann C, Tomaschewski G, Hicke HG (1995) Gasphase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultrafiltration membranes. J Appl Polym Sci 55:1707–1723

    Article  CAS  Google Scholar 

  • Ulbricht M, Riedel M, Marx U (1996b) Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules. J Membr Sci 120:239–259

    Article  CAS  Google Scholar 

  • Ulbricht M, Richau K, Kamusewitz H (1998) Photomodification of ultrafiltration membranes—Part II—Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization. Colloid Surface A 138:353–366

    Article  CAS  Google Scholar 

  • Ulbricht M, Yang H (2005) Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization. Chem Mater 17:2622–2631

    Article  CAS  Google Scholar 

  • Uyama Y, Kato K, Ikada Y (1998) Surface modification of polymers by grafting. Adv Polym Sci 137:1–39

    Article  CAS  Google Scholar 

  • Wang M, An QF, Wu LG, Mo JX, Gao CJ (2007) Preparation of pH-responsive phenolphthalein poly (ether sulfone) membrane by redox-graft pore-filling polymerization technique. J Membrane Sci 287:257–263

    Article  CAS  Google Scholar 

  • Wang XL, Huang J, Chen XZ, Yu XH (2002) Graft polymerization of N-isopropylacrylamide into a microporous polyethylene membrane by the plasma method: technique and morphology. Desalination 146:337–343

    Article  CAS  Google Scholar 

  • Wang Y, Kim JH, Choo KH, Lee YS, Lee CH (2000) Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J Membrane Sci 169:269–276

    Article  CAS  Google Scholar 

  • Watkins D (1993) Research, development, and demonstration of solid polymer electrolyte fuel cell system. In: Blomen LMM (Eds.), Solid polymer fuel cell system. Plenum Press, New York, p351

    Google Scholar 

  • Way JD, Noble RD (1992) Facilitated transport. In: Ho WS, Sirkar KK (Eds.), Membrane Handbook. Van Nostrand Reinhold, New York, 833–866.

    Google Scholar 

  • Wenzel A, Yanagishita H, Kitamoto D, Endo A, Harava K, Nakane T, Hanai N, Matsuda H, Koura H, Kamusewitz H, et al. (2000) Effects of preparation condition of photoinduced graft filling-polymerized membranes on pervaporation performance. J Membrane Sci 179:69–77

    Article  CAS  Google Scholar 

  • Xie R, Chu LY, Chen WM, Xiao W, Wang HD, Qu JB (2005) Characterization of microstructure of poly (N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. J Membrane Sci 258:157–166

    Article  CAS  Google Scholar 

  • Xie R, Li Y, Chu LY (2007) Preparation of thermo-responsive gating membranes with controllable response temperature. J Membrane Sci 289:76–85

    Article  CAS  Google Scholar 

  • Xu FJ, Zhao JP, Kang ET, Neoh KG, Li J (2007) Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization. Langmuir 23:8585–8592

    Article  CAS  Google Scholar 

  • Yamagishi H, Crivello JV, Belfort G (1995a) Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes. J Membrane Sci 105:237–247

    Article  CAS  Google Scholar 

  • Yamagishi H, Crivello JV, Belfort G (1995b) Evaluation of photochemically modified poly (arylsulfone) ultrafiltration membranes. J Membrane Sci 105:249–259

    Article  CAS  Google Scholar 

  • Yamaguchi T, Ito T, Sato T, Shinbo T, Nakao S (1999) Development of a fast response molecular recognition ion gating membrane. J Am Chem Soc 121:4078–4079

    Article  CAS  Google Scholar 

  • Yamaguchi T, Miyata F, Nakaoa S (2003) Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. J Membrane Sci 214:283–292

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nakao SI, Kimura S (1991) Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules 24:5522–5527

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nakao SI, Kumura S (1992) Solubility and pervaporation properties of the filling-polymerized membrane preparod by plasma-graft polymerization for pervaporation of organic-liquid mixtures. Ind Eng Chem Res 31:1914–1919

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nakao SI, Kimura S (1993) Design of pervaporation membrane for organic-liquid separation based on solubility control by plasma-graft filling polymerization technique. Ind Eng Chem Res 32:848–853

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nakao SI, Kimura S (1996) Evidence and mechanisms of filling polymerization by plasma-induced graft polymerization. J Polym Sci Pol Chem 34:1203–1208

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nakao SI, Kimura S (1997) Swelling behavior of the filling-type membrane. J Polym Sci Pol Phys 35:469–477

    Article  CAS  Google Scholar 

  • Yamaguchi T, Suzuki T, Kai T, Nakao S (2001) Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water. J Membrane Sci 194:217–228

    Article  CAS  Google Scholar 

  • Yamauchi J, Yamaoka A, Ikemoto K, Matsui T (1991) Graft copolymerization of methyl methacrylate onto polypropylene oxidized with ozone. J Appl Polym Sci 43:1197–1203

    Article  CAS  Google Scholar 

  • Yanagioka M, Kurita H, Yamaguchi T, Nakao S (2003) Development of a molecular recognition separation membrane using cyclodextrin complexation controlled by thermosensitive polymer chains. Ind Eng Chem Res 42:380–385

    Article  CAS  Google Scholar 

  • Yanagishita H, Arai J, Sandoh T, Negishi H, Kitamoto D, Ikegami T, Haraya K, Idemoto Y, Koura N (2001) Preparation of polyimide composite membranes grafted by electron beam irradiation. J Membrane Sci 232:93–98

    Article  CAS  Google Scholar 

  • Yang B, Yang WT (2003) Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. J Membrane Sci 218:247–255

    Article  CAS  Google Scholar 

  • Yang B, Yang WT (2005) Novel pore-covering membrane as a full open/close valve. J Membrane Sci 258:133–139

    Article  CAS  Google Scholar 

  • Yang JM, Chian CPC, Hsu KY (1999) Oxygen permeation in SBS-g-DMAEMA copolymer membrane prepared by UV photografting without degassing. J Membrane Sci 153:175–182

    Article  CAS  Google Scholar 

  • Yang JM, Hsiue GH (1990) Oxygen permeation in SBS-g-VP membrane and effect of facilitated oxygen carrier. J Appl Polym Sci 41:1141–1150

    Article  CAS  Google Scholar 

  • Yang JM, Jong YJ, Hsu KY (1997a) Preparation and properties of SBS-g-DMAEMA copolymer membrane by ultraviolet radiation. J Biomed Mater Res 35:175–180

    Article  CAS  Google Scholar 

  • Yang JM, Wang MC, Hsu YG, Chang CH (1997b) Preparation of SBS-9-VP copolymer membrane by UV radiation without degassing. J Appl Polym Sci 65:109–116

    Article  CAS  Google Scholar 

  • Yang JM, Wang MC, Hsu YG, Chang CH (1997c) The properties of SBS-9-VP copolymer membrane prepared by UV photografting without degassing. J Membrane Sci 128:133–140

    Article  CAS  Google Scholar 

  • Yang JS, Hsiue GH (1997) Kinetics of Ag+ contained polymeric complex membranes for facilitated olefin transport. J Polym Sci Pol Phys 35:909–917

    Article  CAS  Google Scholar 

  • Yang JS, Hsiue GH (1998) Swollen polymeric complex membranes for olefin/paraffin separation. J Membrane Sci 138:203–211

    Article  CAS  Google Scholar 

  • Yang M, Chu LY, Li Y, Zhao XJ, Song H, Chen WM (2006) Thermo-responsive gating characteristics of poly(N-isopropylacrylamide)-grafted membranes. Chem Eng Technol 29:631–636

    Article  CAS  Google Scholar 

  • Ying L, Yu WH, Kang ET, Neoh KG (2004) Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization. Langmuir 20:6032–6040

    Article  CAS  Google Scholar 

  • Yu HY, Xu MX, Xu ZK (2005) Improvement of surface properties of poly(propylene) hollow fiber microporous membranes by plasma-induced tethering of sugar moieties. Plasma Process Polym 2:627–632

    Article  CAS  Google Scholar 

  • Yu HY, Xu ZK, Lei H, Hu MX, Yang Q (2007) Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor. Sep Purif Technol 53:119–125

    Article  CAS  Google Scholar 

  • Yu HY, Xu ZK, Xie YJ, Liu ZM, Wang SY (2006a) Flux enhancement for polypropylene microporous membrane in a SMBR by the immobilization of poly(N-vinyl-2-pyrrolidone) on the membrane surface. J Membrane Sci 279:148–155

    Article  CAS  Google Scholar 

  • Yu HY, Xu ZK, Yang Q, Hu MX, Wang SY (2006b) Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid. J Membrane Sci 281:658–665

    Article  CAS  Google Scholar 

  • Yuee F, Tianyi S (1988) Polypropylene dialysis membrane prepared by cobalt-60 gamma-radiation-induced graft copolymerization. J Membrane Sci 39:1–9

    Article  Google Scholar 

  • Yusof AHM, Ulbricht M (2006) Effects of photo-initiation and monomer composition onto performance of graft-copolymer based membrane adsorbers. Desalination 200:462–463

    Article  CAS  Google Scholar 

  • Zeng XF, Ruckenstein E (1999) Membrane chromatography: Preparation and applications to protein separation. Biotechnol Progr 15:1003–1019

    Article  CAS  Google Scholar 

  • Zhai GQ, Kang ET, Neoh KG (2004) Inimer graft-copolymerized poly(vinylidene fluoride) for the preparation of arborescent copolymers and “surface-active” copolymer membranes. Macromolecules 37:7240–7249

    Article  CAS  Google Scholar 

  • Zhai GQ, Shi ZL, Kang ET, Neoh KG (2005) Surface-initiated atom transfer radical polymerization on poly(vinylidene fluoride) membrane for antibacterial ability. Macromol Biosci 5:974–982

    Article  CAS  Google Scholar 

  • Zhang J, Yuan J, Yuan YL, Shen J, Lin SC (2003) Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility. Colloid Surface B 30:249–257

    Article  CAS  Google Scholar 

  • Zhang L, Jin G (2006) Novel method for bilirubin removal from human plasma within modified polytetrafluoroethylene capillary. React Funct Polym 66:1106–1117

    Article  CAS  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

  • Zhao ZP, Li JD, Chen J, Chen CX (2005a) Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 2. Grafting of styrene in vapor phase. J Membrane Sci 251:239–245

    Article  CAS  Google Scholar 

  • Zhao ZP, Li JD, Wang D, Chen CX (2005b) Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 4. Grafting of N-vinylpyrrolidone in aqueous solution. Desalination 184:37–44

    Article  CAS  Google Scholar 

  • Zhao ZP, Li JD, Zhang DX, Chen CX (2004) Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 1. Graft of acrylic acid in gas. J Membrane Sci 232:1–8

    Article  CAS  Google Scholar 

  • Zhou XD, Liu PS (2003) Study on antistatic modification of polyurethane elastomer surfaces by grafting with vinyl acetate and antistatic agent. J Appl Polym Sci 90:3617–3621

    Article  CAS  Google Scholar 

  • Zhu LP, Zhu BK, Xu L, Feng YX, Liu F, Xu YY (2007) Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes. Appl Surf Sci 253:6052–6059

    Article  CAS  Google Scholar 

  • Zou H, Luo QZ, Zhou DM (2001) Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Bioph Meth 49:199–240

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Surface Modification by Graft Polymerization. In: Surface Engineering of Polymer Membranes. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88413-2_4

Download citation

Publish with us

Policies and ethics