Skip to main content

Explicit Hard Instances of the Shortest Vector Problem

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5299))

Included in the following conference series:

Abstract

Building upon a famous result due to Ajtai, we propose a sequence of lattice bases with growing dimension, which can be expected to be hard instances of the shortest vector problem (SVP) and which can therefore be used to benchmark lattice reduction algorithms.

The SVP is the basis of security for potentially post-quantum cryptosystems. We use our sequence of lattice bases to create a challenge, which may be helpful in determining appropriate parameters for these schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. J. ACM 52(5), 749–765 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC), pp. 99–108. ACM Press, New York (1996)

    Google Scholar 

  3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC), pp. 284–293. ACM Press, New York (1997)

    Google Scholar 

  4. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC), pp. 601–610. ACM Press, New York (2001)

    Google Scholar 

  5. Bailey, D., Crandall, R.: On the random character of fundamental constant expansions. Experimental Mathematics 10(2), 175–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bailey, D., Crandall, R.: Random generators and normal numbers. Experimental Mathematics 11(4), 527–546 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(4), 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchmann, J., Lindner, R., Rückert, M.: Explicit hard instances of the shortest vector problem (extended version). Cryptology ePrint Archive, Report 2008/333 (2008), http://eprint.iacr.org/2008/333

  9. Cai, J., Nerurkar, A.: An improved worst-case to average-case connection for lattice problems. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pp. 468–477 (1997)

    Google Scholar 

  10. Certicom Corp. The Certicom ECC Challenge, http://www.certicom.com/index.php/the-certicom-ecc-challenge

  11. Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Filipović, B.: Implementierung der gitterbasenreduktion in segmenten. Master’s thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main (2002)

    Google Scholar 

  13. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM Press, New York (2008)

    Google Scholar 

  15. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. J. Comput. Syst. Sci. 60(3), 540–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Hoffstein, J., Silverman, J.H., Whyte, W.: Estimated breaking times for NTRU lattices. Technical Report 012, Version 2, NTRU Cryptosystems (2003), http://ntru.com/cryptolab/tech_notes.htm

  19. Howgrave-Graham, N., Pipher, H.J.J., Whyte, W.: On estimating the lattice security of NTRU. Technical Report 104, Cryptology ePrint Archive (2005), http://eprint.iacr.org/2005/104/

  20. Kleinbock, D., Weiss, B.: Dirichlet’s theorem on diophantine approximation and homogeneous flows. J.MOD.DYN. 4, 43 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Koy, H.: Primale-duale Segment-Reduktion (2004), http://www.mi.informatik.uni-frankfurt.de/research/papers.html

  22. Koy, H., Schnorr, C.-P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 67–80. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Lagarias, J.C., Lenstra Jr., H.W., Schnorr, C.-P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ludwig, C.: A faster lattice reduction method using quantum search. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 199–208. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Ludwig, C.: Practical Lattice Basis Sampling Reduction. PhD thesis, Technische Universität Darmstadt (2005), http://elib.tu-darmstadt.de/diss/000640/

  27. McCurley, K.S.: The discrete logarithm problem. In: Pomerance, C. (ed.) Cryptology and computational number theory, Providence, pp. 49–74. American Mathematical Society (1990)

    Google Scholar 

  28. Micciancio, D.: Almost perfect lattices, the covering radius problem, and applications to Ajtai’s connection factor. SIAM Journal on Computing 34(1), 118–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.E. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Peikert, C.: Limits on the hardness of lattice problems in ℓ p norms. In: IEEE Conference on Computational Complexity, pp. 333–346. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  33. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33(3), 738–760 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th annual ACM symposium on Theory of computing, pp. 84–93. ACM Press, New York (2005)

    Google Scholar 

  35. Regev, O.: On the complexity of lattice problems with polynomial approximation factors. In: A survey for the LLL+25 conference (2007)

    Google Scholar 

  36. RSA Security Inc. The RSA Challenge Numbers, http://www.rsa.com/rsalabs/node.asp?id=2093

  37. Schmidt, W.: Diophantine Approximation. Lecture Notes in Mathematics, vol. 785. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  38. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schnorr, C.: Block reduced lattice bases and successive minima. Combinatorics, Probability and Computing 4, 1–16 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Schnorr, C.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 146–156. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  41. Shoup, V.: Number theory library (NTL) for C++, http://www.shoup.net/ntl/

  42. Stehlé, D.: Damien Stehlé’s homepage at école normale supérieure de Lyon, http://perso.ens-lyon.fr/damien.stehle/english.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchmann, J., Lindner, R., Rückert, M. (2008). Explicit Hard Instances of the Shortest Vector Problem. In: Buchmann, J., Ding, J. (eds) Post-Quantum Cryptography. PQCrypto 2008. Lecture Notes in Computer Science, vol 5299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88403-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88403-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88402-6

  • Online ISBN: 978-3-540-88403-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics