Advertisement

Genetic Programming and Model Checking: Synthesizing New Mutual Exclusion Algorithms

  • Gal Katz
  • Doron Peled
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)

Abstract

Recently, genetic programming and model checking were combined for synthesizing algorithms that satisfy a given specification [7,6]. In particular, we demonstrated this approach by developing a tool that was able to rediscover the classical mutual exclusion algorithms [7] with two or three global bits. In this paper we extend the capabilities of the model checking-based genetic programming and the tool built to experiment with this approach. In particular, we add qualitative requirements involving locality of variables and checks, which are typical of realistic mutual exclusion algorithms. The genetic process mimics the actual development of mutual exclusion algorithms, by starting with an existing correct solution, which does not satisfy some performance requirements, and converging into a solution that satisfies these requirements. We demonstrate this by presenting some nontrivial new mutual exclusion algorithms, discovered with our tool.

Keywords

Model Check Genetic Programming Critical Section Mutual Exclusion Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: ICALP, pp. 169–181 (1980)Google Scholar
  2. 2.
    Floyd, R.: Assigning meaning to programs. In: American Mathematical Society symposium on Applied Mathematics, vol. 19, pp. 19–31 (1967)Google Scholar
  3. 3.
    Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Protocol Specification testing and Verification, pp. 3–18 (1995)Google Scholar
  4. 4.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of the ACM 12, 576–583 (1969)CrossRefzbMATHGoogle Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  6. 6.
    Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kessels, J.L.W.: Arbitration without common modifiable variables. Acta Inf. 17, 135–141 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kirkpatrick Jr., S., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  12. 12.
    Kupferman, O., Vardi, M.: Memoryfull branching-time logic. In: Logic in Computer Science, pp. 265–274 (2006)Google Scholar
  13. 13.
    Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 (1995)CrossRefGoogle Scholar
  14. 14.
    Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 504–516. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Peterson, F.: Economical solutions to the critical section problem in a distributed system. In: STOC: ACM Symposium on Theory of Computing (STOC) (1977)Google Scholar
  16. 16.
    Pnueli, A., Rosner, R.: On the synthesis of reactive systems. In: POPL, Austin, Texas, pp. 179–190 (1989)Google Scholar
  17. 17.
    Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: 5th International Symposium on Programming, pp. 337–350 (1981)Google Scholar
  18. 18.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Prentice-Hall, Inc., Upper Saddle River (2006)Google Scholar
  20. 20.
    Tsay, Y.K.: Deriving a scalable algorithm for mutual exclusion. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 393–407. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gal Katz
    • 1
  • Doron Peled
    • 1
  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations