Advertisement

Optimal Strategy Synthesis in Request-Response Games

  • Florian Horn
  • Wolfgang Thomas
  • Nico Wallmeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)

Abstract

We show the solvability of an optimization problem on infinite two-player games. The winning conditions are of the “request-response” format, i.e. conjunctions of conditions of the form “if a state with property Q is visited, then later a state with property P is visited”. We ask for solutions that do not only guarantee the satisfaction of such conditions but also minimal wait times between visits to Q-states and subsequent visits to P-states. We present a natural class of valuations of infinite plays that captures this optimization problem, and with respect to this measure show the existence of an optimal winning strategy (if a winning strategy exists at all) and that it can be realized by a finite-state machine. For the latter claim we use a reduction to the solution of mean-payoff games due to Paterson and Zwick.

Keywords

Wait Time Temporal Logic Memory State Path Segment Linear Time Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for model measuring. ACM Trans. Comput. Logic 2, 388–407 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Amer. Math. Soc. 138, 367–378 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chatterjee, K., Henzinger, T.A.: Finitary Winning in omega-Regular Games. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35, 413–422Google Scholar
  6. 6.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. of Game Theory 8, 109–113Google Scholar
  7. 7.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  8. 8.
    Gimbert, H., Zielonka, W.: Games Where You Can Play Optimally Without Any Memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gimbert, H., Zielonka, W.: Deterministic Priority Mean-Payoff Games as Limits of Discounted Games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 312–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Horn, F.: Faster Algorithms for Finitary Games. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 472–484. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kupferman, O., Piterman, N., Vardi, M.Y.: From Liveness to Promptness. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 406–419. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    McNaughton, R.: Playing infinite games in finite time. In: Salomaa, A., Wood, D., Yu, S. (eds.) A Half-Century of Automata Theory, pp. 73–91. World Scientific, Singapore (2000)Google Scholar
  13. 13.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Wallmeier, N.: Strategien in unendlichen Spielen mit Liveness-Gewinnbedingungen: Syntheseverfahren, Optimierung und Implementierung, Dissertation, RWTH Aachen (2007)Google Scholar
  15. 15.
    Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state controllers for request-response specifications. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 11–22. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zielonka, W.: An Invitation to Play. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 58–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 259–343 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Florian Horn
    • 1
    • 2
  • Wolfgang Thomas
    • 2
  • Nico Wallmeier
    • 2
  1. 1.LIAFAUniversité Paris 7Paris 5France
  2. 2.Lehrstuhl für Informatik 7RWTH Aachen UniversityAachenGermany

Personalised recommendations