Advertisement

Time-Progress Evaluation for Dense-Time Automata with Concave Path Conditions

  • Farn Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)

Abstract

The evaluation of successor or predecessor state spaces through time progress is a central component in the model-checking algorithm of dense-time automata. The definition of the time progress operator takes into consideration of the path condition of time progress and usually results in high complexity in the evaluation. Previous algorithms in this aspect usually assume that the original location invariance conditions of an automaton are convex in the dense-time state space. Based on this assumption, efficient algorithms for convex path conditions can be designed for reachability analysis. However, it is not clear whether the path conditions are still convex in the general setting of TCTL model-checking. In this work, we discuss the concept of time-convexity that allows us to relax the restrictions on the application of time-progress evaluation algorithm for convex path conditions. Then we give examples in TCTL model-checking that engenders time-concave path conditions even when the original automaton location invariance conditions are time-convex. Then we present two techniques that allow us to apply the evaluation algorithms for time-convex path conditions to time-concave path conditions. Finally, we report our experiment with the techniques. For some benchmarks, our techniques may enhance the performance of model-checking by an order of magnitude.

Keywords

Timed automaton time progress model-checking TCTL convex concave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model Checking for Real-Time Systems. In: IEEE LICS (1990)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: an Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems. In: Hybrid Control System Symposium. LNCS. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Dill, D.L.: Timing Assumptions and Verification of Finite-state Concurrent Systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  6. 6.
    Fourier, J.B.: (reported in:) Analyse des travaux de l’Académie Royale des Sciences pendant l’année 1824, Partie Mathématique (1827)Google Scholar
  7. 7.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-Time Systems. IEEE LICS (1992)Google Scholar
  8. 8.
    Wang, F.: Efficient Verification of Timed Automata with BDD-like Data-Structures, STTT (Software Tools for Technology Transfer). vol. 6(1) (June 2004) In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Wang, F.: Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-like Data-Structures. IEEE Transactions on Software Engineering 31(1), 38–51 (2005); A preliminary version. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 38–51. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, F., Huang, G.-D., Yu, F.: TCTL Inevitability Analysis of Dense-Time Systems: From Theory to Engineering. IEEE Transactions on Software Engineering 32(7) (2006)Google Scholar
  11. 11.
    Yovine, S.: Kronos: A Verification Tool for Real-Time Systems. International Journal of Software Tools for Technology Transfer 1(1/2) (October 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Farn Wang
    • 1
  1. 1.Dept. of Electrical Engineering Graduate Institute of Electronic EngineeringNational Taiwan UniversityTaiwan

Personalised recommendations