Advertisement

SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems

  • Andreas Eggers
  • Martin Fränzle
  • Christian Herde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)

Abstract

In order to facilitate automated reasoning about large Boolean combinations of non-linear arithmetic constraints involving ordinary differential equations (ODEs), we provide a seamless integration of safe numeric overapproximation of initial-value problems into a SAT-modulo-theory (SMT) approach to interval-based arithmetic constraint solving. Interval-based safe numeric approximation of ODEs is used as an interval contractor being able to narrow candidate sets in phase space in both temporal directions: post-images of ODEs (i.e., sets of states reachable from a set of initial values) are narrowed based on partial information about the initial values and, vice versa, pre-images are narrowed based on partial knowledge about post-sets.

In contrast to the related CLP(F) approach of Hickey and Wittenberg [12], we do (a) support coordinate transformations mitigating the wrapping effect encountered upon iterating interval-based overapproximations of reachable state sets and (b) embed the approach into an SMT framework, thus accelerating the solving process through the algorithmic enhancements of recent SAT solving technology.

Keywords

Hybrid System Deduction Rule Equational Constraint Arithmetic Constraint Constraint Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Pappas, G.J. (eds.): HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems with MathSAT. ENTCS 89(4) (2004)Google Scholar
  3. 3.
    Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, ch. 16, pp. 571–603. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  4. 4.
    Biere, A., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, Pappas (eds.) in [1] pp. 326–341Google Scholar
  8. 8.
    Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in Syst. Design 30(3), 179–198 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT Special Issue on Constraint Programming and SAT 1, 209–236 (2007)zbMATHGoogle Scholar
  10. 10.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(t): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH: Hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Hickey, T., Wittenberg, D.: Rigorous modeling of hybrid systems using interval arithmetic constraints. In: Alur, Pappas (eds.) in [1], pp. 402–416Google Scholar
  13. 13.
    Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value problems. In: Computerarithmetic: Scientific Computation and Programming Languages, pp. 255–286. Teubner, Stuttgart (1987)Google Scholar
  14. 14.
    Moore, R.E.: Automatic local coordinate transformation to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations. In: Ball, L.B. (ed.) Error in Digital Computation, vol. II, pp. 103–140. Wiley, New York (1965)Google Scholar
  15. 15.
    Ramdani, N., Meslem, N., Candau, Y.: Rechability of unvertain nonlinear systems using a nonlinear hybridization. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 415–428. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Stauning, O.: Automatic Validation of Numerical Solutions. PhD thesis, Danmarks Tekniske Universitet, Kgs.Lyngby, Denmark (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Eggers
    • 1
  • Martin Fränzle
    • 1
  • Christian Herde
    • 1
  1. 1.Dept. of CSCarl von Ossietzky Universität OldenburgGermany

Personalised recommendations