Skip to main content

Dynamic Velocity Field Angle Generation for Obstacle Avoidance in Mobile Robots Using Hydrodynamics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5290))

Abstract

In this work, a strategy for the generation of the angle reference for a Velocity Field Controller is presented. For an arbitrary trajectory given in its parametric form, it is possible to create a desired velocity field, that could be modified if obstacles were detected by an artificial vision system. Velocity fields are composed by vectors that can be expressed in polar form, i.e. \(V_x=|\overrightarrow{V}|\cdot\cos(\alpha)\) and \(V_y=|\overrightarrow{V}|\cdot\sin(\alpha)\). In the velocity field generation technique proposed, the problem is divided into two separate problems: the calculation of the orientation angle α and the calculation of the linear velocity \(|\overrightarrow V|\). This paper addresses the calculation of α, using the hydrodynamics theory of an incompressible non-viscous fluid, plus the use of conformal mapping, thus generating a trajectory vector field that can evade obstacles. Results obtained show that a smooth and continuous field for both open and closed trajectories is achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, P.Y., Horowitz, R.: Passive Velocity Field Control of Mechanical Manipulators. IEEE Trans. on Robot. and Aut. 15, 751–763 (1999)

    Article  Google Scholar 

  2. Li, P.Y., Horowitz, R.: Passive Velocity Field Control: Part I - Geometry and Robustness. IEEE Trans. on Robot. and Automat. 46, 1346–1359 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Li, P.Y., Horowitz, R.: Passive Velocity Field Control: Part II - Application to Contour Following. IEEE Trans. on Robot. and Aut. 46, 1360–1371 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Kelly, R., Sánchez, V., Bugarin, E.: A Fixed Camera Controller for Visual Guidance of Mobile Robots via Velocity Fields. In: Proc. IEEE Conf. on Rob. and Aut. (2005)

    Google Scholar 

  5. Li, P.Y.: Adaptive Passive Velocity Field Control. In: Proc. American Control Conf., San Diego, U.S.A, vol. 2, pp. 774–779 (June 1999)

    Google Scholar 

  6. Yamakita, M., Suh, J.H.: Adaptive Generation of Desired Velocity Field for Cooperative Mobile Robots with Decentralized PVFC. In: Proc. IEEE/RSJ Int. Conf. on Intell. Robot. and Syst. IROS 2000, Japan, pp. 1841–1846 (2000)

    Google Scholar 

  7. Yamakita, M., Suh, J.H.: Adaptive generation of Desired Velocity field for Leader-Follower Type Mobile Robots with Decentralized PVFC. In: Proc. IEEE Int. Conf. on Robot. and Automat., Seoul, Korea, pp. 3495–3501 (2001)

    Google Scholar 

  8. Dixon, W.E., Galluzo, T., Hu, G.: Adaptive Velocity Field Control of a Wheeled Mobile Robot. In: Proc. Int. Work. on Rob. Mot. and Cont., pp. 145–150 (2005)

    Google Scholar 

  9. Medina-Meléndez, W., Fermín, L., Cappelletto, J., Murrugarra, C., Fernández-López, G., Grieco, J.C.: Vision-Based Dynamic Velocity Field Generation for Mobile Robots. In: Robot Motion and Control. LNCIS, vol. 360, pp. 69–79 (2007)

    Google Scholar 

  10. Waydo, S., Murray, R.M.: Vehicle Motion Planning Using Stream Functions. In: Proc. IEEE Int. Conf. on Robot. and Automat., vol. 2, pp. 2484–2491 (2003)

    Google Scholar 

  11. Liu, C., Wei, Z., Liu, C.: A New Algorithm for Mobile Robot Obstacle Avoidance Based on Hydrodynamics. In: Proc. IEEE Int. Conf. on Aut. and Log. (2007)

    Google Scholar 

  12. Keymeulen, D., Decuyper, J.: The Fluid Dynamics Applied to Mobile Robot Motion: The Stream Field Method. In: Proc. IEEE Int. Conf. on Rob. and Aut. (1994)

    Google Scholar 

  13. Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. Journal of Robotics Research 5, 90–98 (1986)

    Article  Google Scholar 

  14. Bolaños, J., Medina-Meléndez, W., Fermín, L., Cappelletto, J., Fernández-López, G., Grieco, J.C.: Object Recognition for Obstacle Avoidance in Mobile Robots. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 722–731. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Marsden, E., Hoffman, J.: Basic Complex Analysis. W.H. Freeman, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-D’Arpino, C., Medina-Meléndez, W., Fermín, L., Guzmán, J., Fernández-López, G., Grieco, J.C. (2008). Dynamic Velocity Field Angle Generation for Obstacle Avoidance in Mobile Robots Using Hydrodynamics. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88309-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88308-1

  • Online ISBN: 978-3-540-88309-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics