Skip to main content

Advances in Offshore Wind Resource Estimation

  • Chapter
  • First Online:
Advances in Wind Energy Conversion Technology

Abstract

Wind resource mapping is basically a meteorological time-series statistical analysis, to which the features of the landscape such as roughness, topography and local obstacles are integrated. The normal procedure is to use the WAsP program which is de facto standard for wind turbine siting]. The basic principle of the program is to solve the atmospheric flow equation using the logarithmic wind profile law and then to include the effects of the terrain. The optimal situation is to have accurate, long-term wind and turbulence observations from the height in the atmospheric boundary layer at the site where a wind farm is envisioned. This information provides the basis for wind resource mapping, identifying extreme conditions and wind load on the turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortensen N, Heathfield DN, Landberg L, Rathmann O, Troen I, Petersen EL (2000) Wind Atlas Analysis and Wind Atlas Analysis and Application program:WAsP 7.0 Help Facility. ISBN 87-550-2667-2, Risø National Laboratory, Roskilde

    Google Scholar 

  2. Jimenez B, Durante F, Lange B, Kreutzer T, Tambke J (2007) Offshore wind resource assessment with WAsP and MM5: comparative study for the German Bight. Wind Energy 10 (2):121–134

    Article  Google Scholar 

  3. http://www.ewea.org

  4. http://www.ewea.org/?id=47

  5. Hasager CB, Peña A, Mikkelsen T, Courtney M, Antoniou I, Gryning SE, Hansen P, Sørensen PB (2007) 12 MW Horns Rev Experiment. Risø-R-1506 (EN), Roskilde

    Google Scholar 

  6. Antoniou I, Jørgensen HE, Mikkelsen T, Frandsen S, Barthelmie R, Perstrup C, Hurtig M (2006) Offshore wind profile measurements from remote sensing instruments. European Wind Energy Conference and Exhibition 2007, Athens, Brussels: European Wind Energy Association

    Google Scholar 

  7. Peña A, Hasager CB, Gryning SE, Courtney M (2007) Offshore wind profiling using LiDAR measurements

    Google Scholar 

  8. Antoniou I, Jørgensen HE, Mikkelsen T, Pedersen TF, Warmbier G, Smith D (2004) Comparison of wind speed and power curve measurements using a cup anemometer, a LIDAR and a SODAR. European Wind Energy Conference and Exhibition, London (GB) 2004, Brussels: European Wind Energy Association, pp. 47–51

    Google Scholar 

  9. Antoniou I, Jørgensen HE, Bradley SG, Hunerbein SV, Cutler N, Kindler D, Noord M, Warmbier G (2004) The Profiler Intercomparison Experiment (PIE). European Wind Energy Conference and Exhibition, London (GB) 2004, Brussels: European Wind Energy Association pp. 1–7

    Google Scholar 

  10. Barthelmie R, Pryor S (2006) Challenges in predicting power output from offshore wind. J.Energy Eng. 132:91–103

    Article  Google Scholar 

  11. Jørgensen HE, Mikkelsen T, Mann J, Bryce D, Coffey A, Harris M, Smith D (2004) Site wind field determination using a CW Doppler LIDAR - comparison with cup anemometers at Risø. Special Topic Conference. The science of making torque from wind, Delft (NL), 2004, Brussels: European Wind energy Association, pp. 261–266

    Google Scholar 

  12. Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind forms. Wind Energy 9: 39–53

    Article  Google Scholar 

  13. Badger J, Barthelmie R, Frandsen S, Christiansen MB (2006) Mesoscale modelling for an offshore wind farm. European Wind Energy Conference and Exhibition. European Wind Energy Association, Athens Brussels, pp. 1–6

    Google Scholar 

  14. Barthelmie RJ, Pryor SC, Frandsen S, Larsen S (2004) Analytical and empirical modelling of flow downwind of large wind farm clusters. The science of making torque from wind, Delft: pp. 292–303

    Google Scholar 

  15. Barthelmie R, Folkerts L, Larsen SE, Rados K, Pryor S, Frandsen S, Lange B, Schepers G (2006) Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J.Atmos.Ocean.Technol. 23:888–901

    Article  Google Scholar 

  16. Monaldo F, Kerbaol V, Clemente-Colón P, Furevik B, Horstmann J, Johannessen J, Li X, Pichel W, Sikora TD, Thomson DJ, Wackerman C (2003) The SAR measurement of ocean surface winds:an overview. Proceedings of the Second Workshop Coastal and Marine Applications of SAR, Svalbard, Norway, ESA: pp. 15–32

    Google Scholar 

  17. Hasager CB, Dellwik E, Nielsen M, Furevik B (2004) Validation of ERS-2 SAR offshore wind-speed maps in the North Sea. International Journal of Remote Sensing 25 (19):3817–41

    Article  Google Scholar 

  18. Hasager CB, Nielsen M, Astrup P, Barthelmie RJ, Dellwik E, Jensen NO, Jørgensen BH, Pryor SC, Rathmann O, Furevik B (2005) Offshore wind resource estimation from satellite SAR wind field maps. Wind Energy 8:403–19

    Article  Google Scholar 

  19. Hasager CB, Barthelmie RJ, Christiansen MB, Nielsen M, Pryor SC (2006). Quantifying offshore wind resources from satellite wind maps: study area the North Sea. Wind Energy 9:63–74

    Article  Google Scholar 

  20. Hasager CB, Astrup P, Nielsen M, Barthelmie RJ, Christiansen MB, Pryor SC, Nielsen P, Sørensen PB (2005). SAT-WIND project. First yearly report. Risø National Laboratory, Roskilde, Denmark

    Google Scholar 

  21. Monaldo F, Thompson DR, Pichel W, Clemente-Colón P (2004) A systematic comparison of QuickSCAT and SAR ocean surface wind speeds. IEEE Transactions on Geoscience and Remote Sensing 42 (2):283–91

    Article  Google Scholar 

  22. Monaldo FM, Thompson DR, Beal RC, Pichel WG, Clemente-Colón P (2001). Comparison of SAR-derived wind speed with model predictions and ocean byou measurements. IEEE Transactions on Geoscience and Remote Sensing 39:2587–600

    Article  Google Scholar 

  23. Monaldo F (2000) The Alaska SAR demonstration and near-real-time synthetic aperture radar winds. John Hopkins APL Technical Digest 21:75–79

    Google Scholar 

  24. Du Y, Vachon PW, Wolfe J (2002) Wind direction estimation from SAR images of the ocean using wavelet analysis. Canadian Journal of Remote Sensing 28 (3):498–509

    Article  Google Scholar 

  25. Fichaux N, Ranchin T (2002) Combined extraction of high spatial resolution wind speed and direction from SAR images: a new approach using wavelet transform. Canadian Journal of Remote Sensing 28 (3):510–16

    Article  Google Scholar 

  26. Koch W (2004) Directional analysis of SAR images aiming at wind direction. IEEE Transactions on Geoscience and Remote Sensing 42 (4):702–10

    Article  Google Scholar 

  27. Christiansen MB, Hasager CB, Monaldo F (2006) Offshore winds observed from space. Issues for planning of offshore wind farms. WindTech Int. 2 (5):6–9

    Google Scholar 

  28. Christiansen MB, Hasager CB (2006) Using airborne and satellite SAR for wake mapping offshore. Wind Energy 9:437–55

    Article  Google Scholar 

  29. Christiansen MB, Koch W, Horstmann J, Hasager CB (2006) Wind resource assessment from C-band SAR.” Remote Sensing of Environment 105:68–81

    Article  Google Scholar 

  30. Christiansen MB, Hasager CB (2005) Wake effects of large offshore wind farms identified from satellite SAR. Remote Sensing of Environment 98:251–68

    Article  Google Scholar 

  31. Gash JHC (1986) A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Boundary-Layer Meteorology 35:409–13

    Article  Google Scholar 

  32. Pryor SC, Nielsen M, Barthelmie RJ,.Mann J (2004) Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II Quantifying uncertainties associated with sampling strategy and distribution fitting methods. Journal of Applied Meteorology 43:739–50

    Article  Google Scholar 

  33. Cohen AC (1965) Maximum-likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 6:579–88

    Article  Google Scholar 

  34. Rodgers AL, Rodgers JW, Manwell JF (2005) Comparison of the performance of four measure-correlate-predict algorithms. Journal of Wind Engineering and Industrial Aerodynamics 93:243–64

    Article  Google Scholar 

  35. Barthelmie RJ, Pryor SC (2003) Can satellite sampling of offshore wind speeds realistically represent wind speed distributions. Journal of Applied Meteorology 42 (1):83–94

    Article  Google Scholar 

  36. Stoffelen A, Anderson DLT (1997) Scatterometer data interpretation: Estimation and validation of the transfer fuction CMOD4. Journal of Geophysical Research 102 (C3):5767–5780

    Article  Google Scholar 

  37. Sempreviva AM, Larsen SE, Mortensen NG, and Troen I (1990) Response of Neutral Boundary-Layers to Changes of Roughness. Boundary-Layer Meteorology 50 (1-4):205–225

    Article  Google Scholar 

  38. Dyer A (1974) A review of flux-profile relationships. Boundary-Layer Meteorology. Boundary-Layer Meteorology 7:363–72

    Article  Google Scholar 

  39. Owinoh AZ, Hunt JCR, Orr A, Clark PKR, Fernando HJS, Nieuwstadt FTM (2005). Effects of changing surface heat flux on atmospheric boundary-layer flow over flat terrain. Boundary-Layer Meteorology 116:331–361

    Article  Google Scholar 

  40. Beal B, Young GS, Monaldo F, Thompson DR, Winstead NS, Scott C (2004) High Resolution Wind Monitoring with Wide Swath SAR: A User’s Guide

    Google Scholar 

  41. Smedman A, Högström U, Bergstrom H Low level jets – a decisive factor for offshore wind energy siting in the Baltic Sea. Wind Engineering 20:137–147

    Google Scholar 

  42. Bergstrom H (2001). Boundary-Layer Modelling for Wind Climate Estimates. Boundary-Layer Meteorology 25:289–299

    Google Scholar 

  43. Adrian G, Fiedler F (1991). Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Beitrage Physical Atmosphere 64:27–48

    Google Scholar 

  44. Frank H P, Landberg L (1997) Modelling the wind climate of Ireland. Boundary-Layer Meteorology 85:359–378

    Article  Google Scholar 

  45. Mortensen N G, Hansen J C, Badger J, Jørgensen B H, Hasager C B, Georgy Youssef L, Said U, Abd El-Salam A, Akmal Mahmoud M, El Sayed Yousef A, Mahmoud Awad A,.Amd-El Raheem Ahmed M, Sayed M A M, Hussein Korany M, Adb-El Baky Tarad M (2005). Wind Atlas for Egypt, Measurements and Modelling 1991–2005. New and Renewable Energy Authority, Egyptian Meteorological Authority and Risø National Laboratory.

    Google Scholar 

Download references

Acknowledgments

Funding from the Danish Research Academy for the SAT-WIND project (Sagsnr. 2058-03-0006), SAT-WIND-SMV (Sagsnr. 2104-05-0084), 12 MW project (Sagsnr. 2104-05-0013), the Danish PSO project Large Wind Farms Shadow Effects (PSO F&U 4103), European Space Agency (ESA) EO-windfarm (contract 17736/03/I-IW) and the EU WISE project (NNE5-2201-297) are acknowledged. Cooperation with Paul B. Sørensen at DONG Energy (DK), Frank Monaldo and Don Thompson at Johns Hopkins University, Applied Physics Laboratory (USA) and Lars Boye Hansen at GRAS (DK) are acknowledged. Envisat ASAR images from ESA Cat. 1 EO-1356 and EO-3644 projects are acknowledged. KAMM is used with kind permission from Karlsruhe University, Germany. NCEP/NCAR reanalysis data were provided by the National Center for Environmental Prediction (NCEP), USA and the National Center for Atmospheric Research (NCAR), USA. SRTM data were provided by the National Geospatial-Intelligence Agency (NGA), USA and the National Aeronautics and Space Administration (NASA), USA. The GLCC dataset was provided by the United States Geological Survey (USGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Bay Hasager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasager, C.B. et al. (2011). Advances in Offshore Wind Resource Estimation. In: Sathyajith, M., Philip, G. (eds) Advances in Wind Energy Conversion Technology. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88258-9_3

Download citation

Publish with us

Policies and ethics