Skip to main content

Disaster Management

  • Chapter
  • First Online:
Environmental Monitoring using GNSS

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Natural disasters, whether of meteorological origin such as cyclones , floods , tornadoes and droughts or of having geological nature such as earthquakes and volcanoes , are well known for their devastating impacts on human life, economy and environment, and are also formidable physical constraints in our overall efforts to develop and utilize the natural resources on a sustainable basis. Indeed, disasters have been known to hit hard as seen from the floods of 2010–2011 in Pakistan and Australia, the sludge flow in Hungary in 2010, and the landslide in Brazil in 2011, events which had environmental catastrophe. Disaster trends reveal that the most vulnerable and hardest hit are normally the poorest people, most of who live in developing countries. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. For example, the year 2004 was witness to one of the greatest tragedies of humankind, the great tsunami that wiped out civilization in many parts of south-east Asia. Thousands were rendered homeless, and many lost their loved ones.

The greatest exploiter for all of us are floods today, droughts tomorrow, earthquake some times and all of these multiply our trauma of deprivation, pains of poverty and hunger. These disasters take away not only our crops, shelters, lives of our families, friends tattles, but also destroy our hopes and dreams of the future. Is there any event comparable to these, which causes so much human sufferings and injustice?—This is the cry in bewilderness of a common farmer of Koshi River basin, Bihar (India) in the midst of recurrent floods and droughts (Jayaraman et al. 1997). Indeed, the role pinpoint accuracy of positioning plays in the disaster discussed above may seem inconsequential at a first glance, but the truth is that GNSS and GIS are becoming more and more important—not just in the wake of disaster, when, for instance, relief efforts might call for quicker generated maps of flooded areas, for helicopters to navigate through thick smoke, or for the exact location of people buried alive—but in planning and preparatory phases of emergency management (Steede-Terry2000). To this effect, the availability of real-time GNSS information will have important impacts on how scientists and societies prepare for and cope with natural disasters. Hammond et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See e.g., http://www.gdgps.net/products/great-alert.html.

  2. 2.

    See e.g., http://www.bom.gov.au/tsunami/about/atws.shtml

  3. 3.

    See http://www.gtz.de/en/21020.htm.

  4. 4.

    http://www.gdgps.net/products/great-alert.htm. Accessed on 21 Sept 2011.

  5. 5.

    http://www.bom.gov.au/tsunami/about/atws.shtml

  6. 6.

    http://www.bom.gov.au/tsunami/about/atws.shtml

  7. 7.

    http://www.gsi.go.jp/ENGLISH/page_e30068.html

  8. 8.

    http://www.gsi.go.jp/ENGLISH/page_e30068.html

  9. 9.

    Source: Paroscientific Inc., http://www.paroscientific.com

  10. 10.

    More on information can be found by visiting http://www.paroscientific.com

  11. 11.

    Source: Jet Propulsion Laboratory (JPL)

  12. 12.

    Source: Jet Propulsion Laboratory (JPL)

References

  • Adger WN, Huq S, Brown K, Conway D, Hulme M (2003) Adaptation to climate change in the developing world. Prog Dev Stud 3:179–195. doi:10.1191/1464993403ps060oa

    Article  Google Scholar 

  • Ailamaki A, Faloutsos C, Fischbeck P, Small M, VanBriesen J (2003) An environmental sensor network to determine drinking water quality and security. SIGMOD Rec 32(4):47–52. doi:10.1145/959060.959069

    Article  Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res (Oceans) 107(C12):8013. doi:10.1029/2001JC000964

    Article  Google Scholar 

  • Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for ood forecasting. The international civil engineering conference on sustainable development in the 21st century “The civil engineer in development", Nairobi, Kenya, 12–16 August 2003

    Google Scholar 

  • Awange JL, Aluoch J, Ogallo L, Omulo M, Omondi P (2007) Frequency and severity of drought in the lake victoria region (Kenya) and its effects on food security. Clim Res 33:135–142. doi:10.3354/cr033135

    Article  Google Scholar 

  • Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling lake victoria water levels: is climate a contribution factor?. J Clim Change 89:287–297. doi:10.1007/s10584-008-9409-x

    Google Scholar 

  • Baker HC, Dodson AH, Penna NT, Higgins M, Offler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Sol Terr Phys 63(12):1305–1314. doi:10.1016/S1364-6826(00)00249-2

    Article  CAS  Google Scholar 

  • Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901

    Article  CAS  Google Scholar 

  • Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics, vol. 2. Elsevier Science, Amsterdam, pp 2103–2190

    Google Scholar 

  • Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. Comptes Rendus Geosci 342(3):223–233. doi:10.1016/j.crte.2009.12.010

    Article  Google Scholar 

  • Bill R (2011) Precise positioning in ad hoc geosensor newtorks. http://www.ikg.unihannove.de/geosensor/Lecture/Wednesday/Session1/sess1bill.pdf. Accessed 22 Jan 2011

  • Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim Jo L (2003) Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 14:408–412. doi:10.1097/01.EDE.0000073121.63254.c5

    Google Scholar 

  • Born GH, Parke ME, Axelrad P, Gold KL, Johnson J, Key KW, Kubitschek DG, Christensen EJ (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99:(C12) 24,517–24,526

    Google Scholar 

  • Brenner C (2011) Geo sensor networks-when and how? http://dgk.auf.unirostoc.de/uploads/media/22-Brenner.pdf. Accessed 22 Jan 2011

  • Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon river basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. doi:10.1029/2008JB006056

    Article  Google Scholar 

  • Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, New York, pp 639–694

    Google Scholar 

  • Crétaux J-F, Leblanc M, Tweed S, Calmant S and Ramillien G (2007) Combining of radar and laser altimetry, MODIS remote sensing and GPS for the monitoring of ood events: application to the ood plain of the diamantina river. Geophys Res Abstr 9:07496. SRef-ID: 1607-7962/gra/EGU2007-A-07496.

    Google Scholar 

  • Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M.-C, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the near real-time water level and storage variations from remote sensing data. Adv Space Res 47: 1497–1507. doi:10.1016/j.asr.2011.01.004

  • Dalton R (2007) GPS could offer better fault line mapping. Nat News. doi:10.1038/news070521-9. http://www.nature.com/news/2007/070521/full/news070521-9.html. Accessed 25 Sept 2011

  • Dickey JO, Bentley CR, Bilham R, Carton JA, Eanes RJ, Herring TA, Kaula WM, Lagerloef GSE, Rojstaczer S, Smith WHF, Van Den Dool HM, Wahr JM, Zuber MT (1996) Satellite gravity and the geosphere. National Research Council Report, National Academic Press, Washington, DC, p 112

    Google Scholar 

  • Drought Monitoring Centre Nairobi (DMCN) (2002) Factoring of weather and climate information and products into disaster management policy. A contribution to strategies for disaster reduction in Kenya. UNDP, Government of Kenya, and WMO, Nairobi

    Google Scholar 

  • Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. doi:10.1016/j.rse.2011.04.007

    Article  Google Scholar 

  • Geoscience Australia (2008) Need for the geodetic component for absolute sea level monitoring. http://www.ga.gov.au/geodesy/slm/spslcmp/. Accessed 11 Dec 2008

  • Gili JA, Corominas J, Rius J (2000) Using global positioning techniques in landslide monitoring. Eng Geol 155(3):167–192

    Article  Google Scholar 

  • German Indonesian Tsunami Early Warning System (GITEWS) (2008) A new approach in tsunami-early warning. Press-Information embargo: 11.11.2008, 10:00 CET. http://www.gitews.de/fileadmin/documents/content/press/GITEWS_operationell_eng_nov-2008.pdf. Accessed 10 Dec 2008

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, and Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/communityscience/sciencehighlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 6 June 2011

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time global positioning system data. Eos 92(15):125–126. doi:10.1029/2011EO150001

    Article  Google Scholar 

  • Hatfield JL, Prueger JH, Kustas WP (2004) Remote sensing of dryland crops. In: Ustin S. (ed) Remote sensing for natural resources and environmental monitoring: manual of remote sensing, 3rd edn., vol. 4. Wiley, New Jersey, pp 531–568

    Google Scholar 

  • Helm A, Montenbruck O, Ashjaee J, Yudanov S, Beyerle G, Stosius R, Rothacher M (2007) GORS—a GNSS occultation, reflectometry and scatterometry space receiver. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation ION GNSS 2007, Fort Worth, Texas, 25–28 Sept 2007, pp 2011–2021

    Google Scholar 

  • Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical de ections and EGM2008. quasigeoid heights. J Geodesy 85:723–740. doi:10.1007/s00190-011-0482-y

    Article  Google Scholar 

  • Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, Wien

    Google Scholar 

  • Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global navigation satellite system: GPS, GLONASS; galileo and more. Springer, Wien

    Google Scholar 

  • James LF, Young JA, Sanders K (2003) A new approach to monitoring rangelands. Arid Land Res Manag 17:319–328. doi:10.1080/15324980390225467

    Article  Google Scholar 

  • Jayaraman V, Chandrasekhar MG, Rao UR (1997) Managing the natural disasters from space technology inputs. Acta Astronaut 40(2–8):291–325

    Article  Google Scholar 

  • Jeyaseelan AT (2003) Droughts & Floods Assessment and Monitoring using Remote Sensing and GIS. In: Sivakumar MVK, Roy PS, Harmsen K, Saha SK (eds) Satellite remote sensing and GIS applications in agricultural meteorology. AGM-8, WMO/TD No 1182, 1211, Switzerland, pp 291–313

    Google Scholar 

  • Jia M (2005) Crustal deformation from the Sumatra-Andaman earthquake. Geoscience Australia’s analysis of the largest earthquake since the beginning of modern space geodesy. Ausgeo news, issue 80

    Google Scholar 

  • Kadomura H (1994) Climate changes, drought, desertification and land degradation in the Sudano-Sahelian region: a historic geographical perspective. In: Kadomura H (ed) Savannization process in tropical Africa. II. Country briefs. Tokyo Metropolitan University, pp 203–228

    Google Scholar 

  • Kamik V, Algermissen ST (1978) Seismic zoning—chapter in the assessment and mitigation of earthquake risk, UNESCO, Paris pp 1l–47

    Google Scholar 

  • Kelecy TM, Born GH, Parke ME, Rocken C (1994) Precise mean sea level measuring using global positioning system. J Geophys Res 99(c4):7951–7959

    Article  Google Scholar 

  • Khandu, Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2010) GNSS remote sensing of the Australian tropopause. Clim Change 105(3–4): 597–618. doi:10.1007/s10584-010-9894-6

  • Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445

    CAS  Google Scholar 

  • Larson KM (2009) GPS seismology. J Geodesy 83:227–233. doi:10.1007/s00190-008-0233-x

    Article  Google Scholar 

  • Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy 27(1):79–94. doi:10.1080/01490410490465193

    Article  Google Scholar 

  • Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-re ected GPS signal. Radio Sci 37(1):1007. doi:10.1029/2000RS002539

    Article  Google Scholar 

  • Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super- Sauze earthow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2): 33–54. doi:10.1016/S0169-555X(01)00098-8

  • Matsuzaka S (2006) GPS network experience in Japan and its usefulness. Seventeenth united nations regional cartographic conference for Asia and the Pacific. Geographical Survey Institute, Bangkok, Thailand, 18–22 Sept 2006

    Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026. doi:10.1038/35059054

    Article  CAS  Google Scholar 

  • Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi:10.1111/j.1365- 246X.2006.03246.x

    Article  Google Scholar 

  • Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17((2–3):209–241. doi:10.1007/BF00138369

    Article  Google Scholar 

  • Nittel S, Stefanidis A, Cruz I, Egenhofer M, Goldin D, Howard A, Labrinidis A, Madden S, Voisard A, Worboys M (2004) Report from the first workshop on Geo sensor networks. ACM SIGMOD Record 33(1)

    Google Scholar 

  • Nittel S, Labrinidis A, Stefanidis A (eds) (2008) GeoSensor networks (Lecture notes in computer science), vol. 4540 Springer, Berlin, pp 1–6.

    Google Scholar 

  • Omute P, Corner R, Awange J NDVI monitoring of Lake Victoria water level and drought. Water Resour Manag (in press)

    Google Scholar 

  • Phoon SY, Shamseldin AY, Vairavamoorthy K (2004) Assessing impacts of climate change on lake victoria basin, Africa: people-centred approaches to water and environmental sanitation. 30th Water Engineering and Development Centre (WEDC) International Conference, Vientiane, Lao PDR, pp 392–397

    Google Scholar 

  • Privette JL, Fowler C, Wick GA, Baldwin D, Emery WJ (1995) Effects of orbital drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ 53(3):164–171. doi:10.1016/0034-4257(95)00083-D

    Article  Google Scholar 

  • Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge Univeristy Press, Cambridge

    Google Scholar 

  • Rius A, Aparicio JM, Cardellach E, Martín-Neira M, Chapron B (2002) Sea surface state measured using GPS re ected signals. Geophys Res Lett 29(23):2122. doi:10.1029/2002GL015524

    Article  Google Scholar 

  • Rocken C, Kelecy TM, Born GH, Young LE, Purcell GH, Wolf SK (1990) Measuring precise sea level from a buoy using the global positioning system. Geophy Res Lett 17(12):2145–2148

    Article  Google Scholar 

  • Sagiya T (2005) A decade of GEONET: 1994-2003 The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space (56): xxix–xli

    Google Scholar 

  • Schenk A (2006) Intepreting surface displacement in Tehran/Iran region observed by Differential Synthetic Aperture Radar Inteferometry (DINSAR). MSc Thesis, Technical University of Berlin

    Google Scholar 

  • Segall P, Davis JL (1997) GPS applications for geodynamics and earthquake studies. Annu REV Earth Planetary Sci 25:301–336. doi:10.1191/1464993403ps060oa

  • Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134 (4): 95–104. doi:10.1061/(ASCE)0733-9453(2008)134:4(95)

  • Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409

    Article  Google Scholar 

  • Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, California

    Google Scholar 

  • Stefanidis A (2006) The emergence of geoSensor networks. Dir Mag. http://www.directionsmag.com/articles/the-emergence-of-geosensornetworks/123208. Accessed 22 Jan 2011

  • Terhorst A, Moodley D, ISimonis I, Frost P, McFerren G, Roos S, van den Bergh F (2008) Using the sensor web to detect and monitor the spread of vegetation fires in southern Africa. In: Nittel S, Labrinidis A, Stefanidis A (eds) GeoSensor networks (Lecture Notes in computer science), vol 4540. Springer, Berlin, pp 239–251.

    Google Scholar 

  • Titus JG, Park RA, Leatherman SP, Weggel JR, Greene MS, Mausel PW, Brown S, Gaunt G, Trehan M, Yohe G (1991) Greenhouse effect and sea level rise: the cost of holding back the sea. Coast Manag 19:171–204

    Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP reanalyses. NCAR Technical Note TN-430, December

    Google Scholar 

  • Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australias worst droughts. Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

    Article  Google Scholar 

  • US Army Corps of Engineers (2007) NAVSTAR Global positioning system surveying. Engineering and Design Manual, EM 1110-1-1003

    Google Scholar 

  • Warrick RA, Le Provost C, Meier MF, Oerlemans J,Woodworth PL (1996) Changes in sea level. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Klattenberg A, Maskell K (eds.). Climate change 1995, The science of climate change. Cambridge University Press, Cambridge, pp 359–405

    Google Scholar 

  • Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in bass strait, Australia. Marine Geodesy 26(3-4):285–304. doi:10.1080/01490410390256745

    Article  Google Scholar 

  • Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geogr Inf Sci 20(10):1087–1108. doi:10.1080/13658810600852180

    Article  Google Scholar 

  • Zhanga J, Zhoub C, Xua K, Watanabe M (2002) Flood disaster monitoring and evaluation in China. Environ Hazards 4:33–43. doi:10.1016/S1464-2867(03)00002-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L. (2012). Disaster Management. In: Environmental Monitoring using GNSS. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88256-5_14

Download citation

Publish with us

Policies and ethics