Skip to main content

Climate Change and Weather Related Impacts

  • Chapter
  • First Online:
Environmental Monitoring using GNSS

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 2111 Accesses

Abstract

In order to address the contributions of GNSS to monitor climate change caused by increase in temperature, a distinction between weather and climate on one hand, and climate variability and climate change on the other hand is essential. Burroughs points out that weather is what is happening to the atmosphere at any given time (i.e., what one gets) whereas climate is what would be expected to occur at any given time of the year based on statistics built up over many years (i.e., what one expects). From these definitions, it follows that changes in the climate constitute shifts in meteorological conditions lasting a few years or longer, and may involve a single parameter, e.g., temperature or rainfall, but usually accompany more shift in weather patterns that might result in a shift to, say, colder, wetter, cloudier and windier conditions. If meteorological observations, e.g., of temperature are taken over time, a series of its annual averages could be developed. This series would indicate that over the period of measurements the average value remains effectively constant but fluctuates considerably from observation to observation. This fluctuation about the mean is a measure of climate variability. Now, if a linear or cyclic trend is fitted onto the variability, the effect of climate change could be analysed.

Real-time GNSS measurements have the potential to contribute to climate modeling and weather forecasting through integrative measurement of atmospheric water vapor in GNSS signal delays and measurements of soil moisture flux. W.C. Hammond et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Centre for Medium-Range Weather Forecasts.

  2. 2.

    see e.g., http://www.nasa.gov/mission_pages/noaa-n/main/index.html.

  3. 3.

    Thematic mapper.

  4. 4.

    http://landsat.gsfc.nasa.gov/about/L7_td.html.

  5. 5.

    High-Resolution Visible and Infrared (imaging instrument). See http://www.cnes.fr/web/CNES-en/7114-home-cnes.php.

  6. 6.

    Advanced Very High Resolution Radiometer.

  7. 7.

    High Resolution Visible.

  8. 8.

    Synthetic Aperture Radar.

References

  • Añel JA, Gimeno L, de la Torre L, Nieto R (2006) Changes in the tropopause height for the Eurasian region from CARDS radiosonde data. Naturwissenchaften 93: 603–609. doi:10.1007/s00114-006-0147-5

    Google Scholar 

  • Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751. doi:10.1109/JPROC.2009.2034765

    Google Scholar 

  • Agudelo PA, Curry JA (2004) Analysis of spatial distribution in tropospheric temperature trends. Geophys Res Lett 31:L22207. doi:10.1029/2004GL02818

  • Anthes RA, Rocken C, Kuo YH (2000) Applications of COSMIC to meteorology and climate. Terr Atm Ocean Sci 11:115–156

    Google Scholar 

  • Atheru ZKK, Ogallo LA, Ambenje PG (2000) Regional climate forecasts for enhanced food production to alleviate rural poverty around the Lake Victoria region. KMFRI, Nairobi, pp 28–30

    Google Scholar 

  • Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. The International civil engineering conference on sustainable development in the 21st century “The Civil Engineer in Development", Nairobi, Kenya, 12–16 Aug 2003

    Google Scholar 

  • Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin

    Google Scholar 

  • Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling lake Victoria water levels: is climate a contribution factor? J Clim Change 89:287–297. doi:10.1007/s10584-008-9409-x

    Google Scholar 

  • Awange JL, Grafarend EW, Paláanczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics. Springer, Berlin

    Book  Google Scholar 

  • Baker HC, Dodson AH, Penna NT, Higgins M, Offler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atm Solar-Terr Phys 63(12):1305–1314. doi:10.1016/S1364-6826(00)00249-2

    Article  CAS  Google Scholar 

  • Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. J Geophys Res 114:B06407. doi:10.1029/2008JB006239

  • Beaudoin AB (2002) On the identification and characterization of drought and aridity in postglacial paleoenvironmental records from the northern great plains. Gographie physique et Quaternaire 56(2–3):229-246 (E-SCAPE contribution 3. Note: volume dated 2002, but published in 2004)

    Google Scholar 

  • Bergthorsson P, Dööos B (1955) Numerical weather map analysis. Tellus 7:329–340

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS Meteorology: remote sensing of water vapour using global positioning system. J Geophy Res 97:15,787–15,801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • Bjerknes V (1904) Das problem der wettervorhersage, betrachtet vom stanpunkt der mechanik und der physik. Meteorologische Zeitschrift 21:1–7

    Google Scholar 

  • Blair JB, Rabine D, Hofton M (1999) The laser vegetation imaging sensor (LVIS): a medium-altitude, digitization only, airborne laser altimeter for mapping. ISPRS 54:115–122

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology. an introduction. 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Bureau of Meteorology (2009) Australia’s climate change and variability. Bureau of Meteorology, Australia. http://www.bom.gov.au/silo/products/cli_chg/. Accessed 25 Oct 2009

  • Burroughs WJ (2007) Climate change: a multidisciplinary approach. 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Charney JG (1955) The use of primitive equations of motion in numerical prediction. Tellus 7:22–26

    Article  Google Scholar 

  • Charney JG, Fjørtoft R, von Neuman J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  Google Scholar 

  • Christy JR, Spencer RW, Lobl ES (1998) Analysis of the merging procedure for the MSU daily temeperature series. J Clim 11:2016–2041

    Article  Google Scholar 

  • Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: dataset construction and radiosonde comparisons. J Atm Ocean Technol 17:1153–1170

    Article  Google Scholar 

  • Christy JR, Spencer RW, Norris WB, Braswell WD, Parker DE (2003) Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J Atm Ocean Technol 20(5):613–629

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Dole RM, Hoerling M, Schubert S (eds) (2008) Reanalysis of historical climate data for key atmospheric features: implications for attribution of causes of observed change: a report by the US Climate Change Science Program (CCSP) and the Subcommittee on Global Change Research. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, 156 pp

    Google Scholar 

  • Elliot WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Am Meteorol Soc 72:1507–1520

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Google Scholar 

  • Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delay. Ann Geophys 18(2):223–234. doi:10.1007/s00585-000-0223-7

    Article  Google Scholar 

  • Foelsche U, Gobiet A, Steiner AK, Borsche M, Wickert J, Schmidt T, Kirchengast G (2006) Global climatologies based on radio occultation data: The CHAMP-CLIM project. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 303–314

    Google Scholar 

  • Free M, Seidel DJ (2005) Causes of differing temperature trends in radiosonde upper air data sets. J Geophys Res 110:D07101. doi:10.1029/2004JD005481

    Article  Google Scholar 

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 06 June 2011

  • Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time global positioning system data. Eos 92(15):125–126. doi:10.1029/2011EO150001

    Article  Google Scholar 

  • Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapor mapping from interferometric radar measurements. Science 283:1297–1299. doi:10.1126/science.283.5406.1297

    Article  CAS  Google Scholar 

  • Healey SB, Thépaut JN (2006) Assimilation experiment with CHAMP GPS radio occultation measurements. Q J Roy Meteorol Soc 132:605–623. doi:0.1256/qj.04.182

    Article  Google Scholar 

  • Healey SB, Jupp AM, Marquardt C (2005) Forecast impact experiment with GPS radio occultation measurements. Geophys Res Lett 32:L03804.1–L03804.4

    Google Scholar 

  • Highwood EJ, Hoskins BJ, Berrisforde P (2000) Properties of the arctic tropopause. Q J Roy Meteorol Soc 126:1515–1532. doi:10.1002/qj.49712656515

    Article  Google Scholar 

  • Houghton J (2004) Global warming. 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp

    Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change: contribution of working group I to the fourth assessment report

    Google Scholar 

  • Jallow BP, Barrow MKA, Leatherman SP (1996) Vulnerability of the coastal zone of the Gambia to sea level rise and development of response options. Clim Res 6:165–177

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modelling, data assimilation and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Khandu, Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2010) GNSS remote sensing of the Australian tropopause. Clim Change 105(3–4):597–618. doi:10.1007/s10584-010-9894-6

  • Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445

    Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frefick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

  • Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atm Ocean Sci 11:157–186

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earths atmosphere with radio occultation measurements using global positioning system. J Geophys Res 102(D19):23429–23465

    Article  Google Scholar 

  • Le Toan T, Ribbes F, Floury N, Wang LF, Ding KH, Kong JA, Fujita M, Kurosu T (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modelling results. IEEE Trans Geosci Rem Sens 35:41–56. doi:10.1109/36.551933

    Article  Google Scholar 

  • Leroy SS (1997) Measurements of geopotential heights by GPS radio occultation. J Geophys Res 102(D6):6971–6986

    Article  Google Scholar 

  • Leroy SS, Dykema JA, Anderson JG (2006) Climate benchmarking using GNSS occultation. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 287–301

    Google Scholar 

  • Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP (2007) Lake-level change and water balance analysis at lake Qinghai,West China during recent decades. Water Res Manag 21:1505–1516. doi:10.1007/s11269-006-9096-1

    Article  Google Scholar 

  • Magadza CHD (1996) Climate change: some likely multiple impacts in southern Africa. In: Downing TE (ed) Climate change and world food security. Springer, Heidelberg, pp 449–483

    Google Scholar 

  • Manneh A (1997) Vulnerability of the water resources sector of the Gambia to climate change. In: Republic of the Gambia: final report of the Gambia/U.S. Country study program project on assessment of the vulnerability of the major economic sectors of the Gambia to the projected climate change. Banjul, the Gambia, (unpublished)

    Google Scholar 

  • Martens WJM (1998) Health impacts of climate change and ozone depletion: an ecoepidemiologic modelling approach. Health Pers 106:241–251

    Google Scholar 

  • Martens WJM, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995) Potential impact of global climate change on malaria risk. Environ Health Pers 103:458–464

    Article  CAS  Google Scholar 

  • Mears CA, Schabel MC, Wents FJ (2003) A reanalysis of MSU channel 2 tropospheric temperature trend. J Clim 16(22):3560–3664. doi:10.1175/1520- 0442(2003)0163ce3650:AROTMC3de2.0.CO;2

    Google Scholar 

  • Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication, Pasadena, pp 94–18

    Google Scholar 

  • Mistry VV, Conway D (2003) Remote forcing of East African rainfall and relationships with uctuations in levels of lake Victoria. Int J Climatol 23:67–89. doi:10.1002/joc.861

    Article  Google Scholar 

  • Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of west Antarctic collapse. Science 323(5915):753. doi:10.1126/science.1166510

    Article  CAS  Google Scholar 

  • Nagurny AP (1998) Climatic characteristics of the tropopause over the Arctic basin. Ann Geophys 16:110–115

    Article  Google Scholar 

  • Nyakwada W (2000) The use of weather and climate forecasts by rural people to enhance food production. In: Akunda E, Mango C, Oteng’l SBB et al (eds) Sustainable environmental management for poverty alleviationin the lake Victoria basin. KMFRI, Nairobi, pp 38–42

    Google Scholar 

  • Okoola RE (2000) Climate change as related to food production for the alleviation of rural poverty in the Lake basin region. In: Akunda E, Mango C, Oteng’l SBB et al (eds) Sustainable environmental management for poverty alleviation in the lake Victoria basin. KMFRI, Nairobi, pp 43–45

    Google Scholar 

  • Otengi SBB (2000) Weather and climate hazards that affect food production in the Lake Victoria Basin. In: Akunda E, Mango C, Oteng’l SBB et al (eds) Sustainable environmental management for poverty alleviation in the lake Victoria basin, Kisii. KMFRI, Nairobi, pp 24–27. 3–5 Oct 1995

    Google Scholar 

  • Pan LL, Randel WJ, Gary BL, Mahony MJ, Hintsa EJ (2004) Definitions and sharpness of the extratropical tropopause: a trace gas perspective. J Geophys Res 109:D23103. doi:10.1029/2004JD004982

    Article  Google Scholar 

  • Parker DE, Gorden M, Cullum DPN, Sexton DMH, Folland CK, Rayner N (1997) A new global gridded radiosonde temperature database and recent temperature trends. Geophys Res Lett 24(12):1499–1502. doi:10.1029/97GL01186

    Article  Google Scholar 

  • Phillips S (2006) Water crisis. COSMOS, issue 9, June 2006. http://www.cosmosmagazine.com/issues/2006/9/

  • Pittcock B (2003) Climate change: an Australian guide to the science and potential impacts. Australian Greenhouse Office, Canberra

    Google Scholar 

  • Poli P (2006) Assimilation of GNSS radio occultation data into numerical weather prediction. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 195–204

    Google Scholar 

  • Poli P, Pailleux J, Ducrocq V, Moll P, Rabier F, Mauprivez M, Dufour S, Grondin M, Lechat-Carvalho F, De Latour A, Issler J, Ries L (2008) Weather report: meteorological Applications of GNSS from space and on the ground. InsideGNSS 3(8):30–39

    Google Scholar 

  • Prince SD, Goward S (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835

    Article  Google Scholar 

  • Randall DA, Tjemkes S (1991) Clouds, the Earth’s radiation budget and the hydrological cycle. Glob Plan Change 4(1–3):3–9. doi:10.1016/0921-8181(91)90063-3

    Article  Google Scholar 

  • Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105(D12):15509–15523. doi:10.1029/2000JD900155

    Article  Google Scholar 

  • Ranson KJ, Sun G, Weishampel JF, Knox RG (1997) Forest biomass from combined ecosystem and radar backscatter. Rem Sens Environ 59(1):118–133. doi:10.1016/S0034-4257(96)00114-9

    Article  Google Scholar 

  • Richards TS, Gallego J, Achard F (2000) Sampling for forest cover change assessment at the pantropical scale. Int J Rem Sens 21(6–7):1473–1490. doi:10.1080/014311600210272

    Article  Google Scholar 

  • Richardson LF (2007)Weather prediction by numerical process, 2nd edn. Cambridge Mathematical Library (the first edition appeared in 1922), Cambridge

    Google Scholar 

  • Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapour with the global positioning system. Geophys Res Lett 20(23):2631–2634. doi:10.1029/93GL02935

    Article  Google Scholar 

  • Rocken C, Anthes R, Exner M, Hunt D, Sokolovski S, Ware R, Gorbunov M, Schreiner S, Feng D, Hermann B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102(D25):29849–29866. doi:10.1029/97JD02400

    Article  Google Scholar 

  • Rosenqvist Ã…, Imhoff M, Milne A, Dobson C (eds) (1999) Remote sensing and the Kyoto protocol: a review of available and future technology for monitoring treaty compliance. Ann Arbor, Michigan, USA, 20–22 Oct 1999

    Google Scholar 

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of Anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    Article  CAS  Google Scholar 

  • Santer BD, Wigley TML, Simmons AJ, Kallberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Bruggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109. doi:10.1029/2004JD005075

  • Sausen R, Santer BD (2003) Use of changes in tropopause height to detect influences on climate. Meteorologische Zeitschrift 12(3):131–136. doi:10.1127/0941-2948/2003/0012-0131

    Article  Google Scholar 

  • Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmo Chem Phys 5:1473–1488

    Article  CAS  Google Scholar 

  • Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. doi:10.1029/2008GL034012

    Article  Google Scholar 

  • Schröder T, Leroy S, Stendel M, Kaas E (2003) Stratospheric temperatures probed by microwave sounding units or by occultation of the global positioning system. Geophys Res Lett 30(14):1734. doi:10.1029/2003GL017588

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101. doi:10.1029/2006JD007363

    Article  Google Scholar 

  • Seidel JD, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106(D8):7857–7878. doi:10.1029/2000JD900837

    Article  Google Scholar 

  • Shea DJ, Wifley SJ, Stern IR, Hoar TJ (1994) An introduction to atmospheric and oceanographic data. NCAR technical note, Boulder

    Google Scholar 

  • Slaymaker O, Kelly REJ (2007) The cryosphere and global environmental change: environmental systems and global change series, 1st edn. Blackwell, Victoria

    Google Scholar 

  • Spencer RW, Christy JR, Grody NC (1990) Global atmospheric temperature monitoring with satellite microwave measurements: methods and results 1979–1984. J Clim 3(10):1111–1128. doi:10.1175/1520- 0442(1990)0033ce1111:GATMWS3de2.0.CO;2

    Article  Google Scholar 

  • Steffen W, Sanderson A, Tyson PD, Jäger J, Matson PA, Moore B III, Oldfield F, Richardson K, Schellnhuber HJ, Turner BL II, Wasson RJ (2005) Global change and the earth system: a planet under pressure. Springer, Berlin

    Google Scholar 

  • Stendel M (2006) Monitoring climate variability and change by means of GNSS data. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 275–285

    Google Scholar 

  • Syndergaard S, Kuo Y-H, Lohmann MS (2006) Observation operators for the assimilation of occultation data into atmospheric models: a review. In: Foelsche U, Kirchengast G, Steiner A (eds) Atmosphere and climate studies by occultation methods. Springer, Berlin, pp 205–224

    Google Scholar 

  • Talagrand O (1997) Assimilation of observations, an introduction. J Meteorol Soc Jap (special issue) 75(1B):191–209

    Google Scholar 

  • Tao W (2008) Near real-time GPS PPP-inferred water vapour system development and evaluation. MSc thesis, UCGE Reports No: 20275. http://www.geomatics.ucalgary.ca/research/publications. Accessed 26 Aug 2009

  • Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP reanalyses. NCAR technical note, TN-430, Dec 1996

    Google Scholar 

  • Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australias worst droughts? Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

  • UN (1998) Kyoto protocol to the United Nations framework convention on climate change. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 26 Sept 2011

  • UNFCCC (2007) Kyoto protocol reference manual on accounting of emissions and assigned amounts: framework convention on climate change. http://unfccc.int/kyotoprotocol/items/2830.php

  • Varotsos C, Cartalis C, Vlamakis A, Tzanis C, Keramitsoglou I (2004) The longterm coupling between column ozone and tropopause properties. J Clim 17:3843–3854. doi:10.1175/1520-0442(2004)0173ce3843:TLCBCO3de2.0.CO;2

    Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302(5643):269–272. doi:10.1126/science.1087910

    Article  CAS  Google Scholar 

  • Ware R, Exner M, Schreiner W, Anthes R, Feng D, Herman B, Gorbunov M, Sokolovskiy S, Hardy K, Kuo Y, Zou X, Trenberth K, Meehan T, Melbourne W, Businger S (1996) GPS sounding of atmosphere from low earth orbit: preliminary results. Bull Am Meteorol Soc 77:19–40. doi:10.1175/1520-0477(1996)0773ce0019:GSOTAF3de2.0.CO;2

    Google Scholar 

  • Ware RH, Fulker DW, Stein SA, Anderson DN, Avery SK, Clerk RD, Droegmeier KK, Kuettner JP, Minster JB, Sorooshian S (2000) Real-time national GPS networks: opportunities for atmospheric sensing. Earth Plan Space 52:901–905

    CAS  Google Scholar 

  • Wickert J, Beyerle G, Konig K, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio ocultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23:653–657. doi:10.5194/angeo-23-653-2005

    Article  Google Scholar 

  • Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Khler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atm Ocean Sci 20:35–50. doi:10.3319/TAO.2007.12.26.01(F3C)

    Article  Google Scholar 

  • WMO (1957) Definition of tropopause. World Meteorological Organisation, Geneva

    Google Scholar 

  • Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate-change using the global positioning system. J Geophys Res 98(D8):14925–4937. doi:10.1029/93JD00948

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L. (2012). Climate Change and Weather Related Impacts. In: Environmental Monitoring using GNSS. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88256-5_10

Download citation

Publish with us

Policies and ethics