Skip to main content

Attenuating Methane Emission from Paddy Fields

  • Chapter
  • First Online:
Climate Change and Crops

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Rising trend of earth’s surface temperature is today a global threat to mankind. This trend is directly linked to an increasing atmospheric abundance of various greenhouse gases, like CO2, CH4 , N2O etc. emanating from man-made activities (IPCC 2007). Among these gases, CH4 is the most abundant carbon species present in the atmosphere (mixing ratio ~ 1.8 ppm). Being a highly radiatively active gas, it is a major component of the natural gas after CO2, accounting for about 20% of the global greenhouse effect (Wuebbles and Hayhoe 2002). Being highly reactive, CH4 also affects the chemistry and oxidation capacity of the atmosphere by influencing the concentrations of tropospheric ozone, hydroxyl radicals and carbon monoxide (Cicerone and Oremland 1998). Ozone formation further amplifies the methane AQ1 induced greenhouse effect by approximately 70% (Moss 1992). Global atmospheric concentration of CH4 has increased from a pre-industrial value of about 715 ppb to 1745 ppb in 1998, and to 1774 ppb in 2005 (IPCC 2007). Once emitted, CH4 remains in the atmosphere for approximately 8.4 years before removal (Dentener et al. 2003). Although atmospheric abundance of CH4 is far less than 0.5% of CO2, but on molecule to molecule basis, it is approximately 23 times more effective in absorbing infrared radiations than CO2 (IPCC 2007). Dlugokencky et al. (2003) observed that atmosphericmethane had been at a steady state of 1751 ppbv between 1999 and 2002 (Fig. 16.1). However, over the last two decades, the concentration of CH4 in the troposphere is reportedly increasing at the rate of ~ 0.7% each year and is anticipated to modify the global climate, affecting terrestrial ecosystem both functionally and structurally (Houghton et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abao EB Jr, Bronson KF, Wassmann R, Singh U (2000) Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rain fed conditions. Nut Cyc Agroecos 58:131–139

    CAS  Google Scholar 

  • Adachi K (2001) Methanogenic Archaea and methanotrophic bacteria in a subtropical paddy field and their interaction: Controlling methane emissions from paddy fields. Microbes Environ 16:197–205

    Google Scholar 

  • Adhya TK, Patnaik P, Satpathy SN, Kumaraswamy S, Sethunathan N (1997) Influence of phosphorus application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–181

    Google Scholar 

  • Agnihotri S, Kulshreshtha K, Singh SN (1999) Mitigation strategy to contain methane emission from rice-fields. Environ Monit Assess 58:95–104

    CAS  Google Scholar 

  • Alperin MJ, Reeburg WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50:940–945

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Anastri C, Dowding M, Simpson VJ (1992) Future CH4 emissions from rice production. J Geophys Res 97:7521–7525

    Google Scholar 

  • Arif SMA, Houwen F, Verstrate W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soils 21:95–102

    Google Scholar 

  • Aselman I., Crutzen PJ (1989) The global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emission. J Atmos Chem 8:307–358

    Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane transport capacity of rice plants. I. Influence of methane concentration and growth analysed with an automated measuring system. Nutr Cycl Agroecosys 58:357–366

    CAS  Google Scholar 

  • Aulakh MS, Rennie DA (1985) Azide effects upon N2O emission and transformations of N in soils. Can J Soil Sci 65:205–212

    CAS  Google Scholar 

  • Aulakh MS, Rennie DA, Paul EA (1984) Gaseous nitrogen losses from soils under Zero-till as compared with conventional-till management systems. J Environ Qual 13:130–136

    Google Scholar 

  • Banik A, Sen M, Sen SP (1996) Effects of inorganic fertilizers and micronutrients on methane production from wetland rice (Oryza sativa L.). Biol Fertil Soils 21:319–322

    CAS  Google Scholar 

  • Bartlett KB, Harriss RC, Seabacher DI (1985) Methane flux from coastal salt marshes. J Geophys Res 90:5710–5720

    CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry and specific inhibitors of CH4, NH4 + and CO oxidation by methanotrophs and nitrifers. Microbiol Rev 53:68–84

    CAS  Google Scholar 

  • Beri V, Sidhu BS, Bahl GS, Bhat AK (1995) Nitrogen and phosphorustransformations as affected by crop residue management practices and their influence on crop yields. Soil Use Manag 11:51–54

    Google Scholar 

  • Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric Ecosyst Environ 79:73–83

    CAS  Google Scholar 

  • Bollag JM, Czlonkowski ST (1973) Inhibition of methane formation in soil by various nitrogen containing compounds. Soil Biol Biochem 5:673–678

    CAS  Google Scholar 

  • Bossio DA, Horwath WR, Mutters RG, Kessel VC (1999) Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biol Biochem 31:1313–1322

    CAS  Google Scholar 

  • Bronson KF, Mosier AR (1991) Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice. Biol Fertil Soils 11:116–120

    CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors and ureases inhibitors. Biol Fertil Soils 17:263–268

    CAS  Google Scholar 

  • Bronson KF, Mosier AR, Bishnoi SR (1992) Nitrous oxide emissions in irrigated corn as affected by encapsulated calcium carbide and nitrapyrin. Soil Sci Soc Am J 56:161–165

    CAS  Google Scholar 

  • Bronson KF, Neue HU, Singh U Abao EB Jr. (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen, and water management. Soil Sci Soc Am J 61:981–987

    CAS  Google Scholar 

  • Bronson KF, Touchton JT, Hauck RD, Kelley KR (1991) Nitrogen15 recovery in winter wheat as affected by application timing and dicyandiamide. Soil Sci Soc Am J 55:130–135

    CAS  Google Scholar 

  • Cai Z, Xing G, Yan X, Xu H, Tsurta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    CAS  Google Scholar 

  • Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem Cycles 11:15–27

    CAS  Google Scholar 

  • Chidthaisong A, Obata H, Watanable I (1999) Methane formation and substrate utilization in anaerobic rice soils as affected by fertilization. Soil Biol Biochem 31:135–143

    CAS  Google Scholar 

  • Cicerone RJ and Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 299–327

    Google Scholar 

  • Conard R (1993) Mechanisms controlling methane emission from wetland rice fields. In: Oremland RS (ed) The Biogeochemistry of Global Change: Radiactive Trace Gases. Chapman and Hall, New York, pp 317–335

    Google Scholar 

  • Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64:59–69

    CAS  Google Scholar 

  • Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12:28–32

    CAS  Google Scholar 

  • Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asia CA, Wassmann R Jr, Lantin RS, Buendia LX (2000) Methane emission from irrigated and intensively managed rice fields in central Luzon (Philipines). Nutr Cycling Agroecosys 58:37–53

    CAS  Google Scholar 

  • Dalton H, Hocknall HD (1990) Methane Oxidation: Is anaerobic methane oxidation possible? In: Lawson P, Alston YR (eds), Research & Development Workshop, ETSU, Harwell, UK, pp 102–113

    Google Scholar 

  • Dalton H, Wilkins PC, Jiang Y (1993) Structure and mechanism of action the hydroxylase of soluble methane monooxygenase. In: Murrell JC, Kelly DP (eds) Microbiol Growth on C-1 Compounds. Intercept Andover, UK, pp 65–80

    Google Scholar 

  • Denier van der Gon HAC, Neue HU (1994) Impact of gypsum application on the methane emission from a wetland rice field. Global Biogeochem Cycles 9:127–137

    Google Scholar 

  • Denier van der Gon HAC, Neue HU (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochem Cycles 9:11–22

    Google Scholar 

  • Dentener F, Peters W, Krol M, Van Weele M, Bergamaschi P, Lelieveld J (2003) Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979–1993 time period. J Geophys Res 108 (D15), 4442, doi:10.1029/2002JD002916

    Google Scholar 

  • Dlugokencky EJ, Dutton E, Novelli P, Tans PP (1998) Continuing decline in the growth rate of the atmospheric CH4 burden. Nature 2393:447–450

    Google Scholar 

  • Dlugokencky EJ, Dutton E, Novelli P, Trans PP, Masarie KA, Lantz K.N. Madronich S (1996) Changes in CH4 and co growth rates after the eruption of Mt. Pinatuba and their link with change in tropical tropospheric UV flux. Geophycs Res Lett 393:447–450

    Google Scholar 

  • Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, Tans PP (2003) Atmospheric methane levels off: Temporary pause or new steady state? Geophysical Research Letters, 30(19), 1992, doi:10.1029/2003GL018126

    Google Scholar 

  • Dlugokencky EJ, Steele LP, Land PM, Masarie KA (1994) The growth rate and distribution of atmospheric methane. J Geophys Res 99:17021–17043

    CAS  Google Scholar 

  • Drauschke G, Neumann W (1992) Investigation on influences of toxic substances on microbial methane production from cattle wastes. Zentralbl Mikrobiol 147:308–318

    CAS  Google Scholar 

  • Dubey SK (2003) Spatio-kinetic variation of methane oxidizing bacteria in paddy soil at mid-tillering: Effect of N-fertilizers. Nutr Cycling Agroecosyst 65:53–59

    CAS  Google Scholar 

  • Dubey SK, Sinha ASK, Singh JS (2000) Spatial variation in the capacity of soil for CH4 uptake and population size of methane oxidizing bacteria in dryland rice agriculture. Curr Sci 78:617–620

    CAS  Google Scholar 

  • Dunfield P, Knowles R, Dumnt R, Moore TR (1993) Methane production and consumption in temperature and subarctic peat soils: Response to temperature and pH. Soil Biol Biochem 25:321–326

    CAS  Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403

    CAS  Google Scholar 

  • FAO (2005) FAOSTAT: Agriculture. URL: http//apps.fao.org/default.htm (last updated February 2005)

    Google Scholar 

  • Fey A, Conrad R (2003) Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biol Biochem 35:1–8

    CAS  Google Scholar 

  • Flessa H, Beese F (1995) Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Sci Soc Am J 59:1044–1051

    CAS  Google Scholar 

  • Frankenberg C, Meirink JF, Van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014

    CAS  Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele L, Fraser P (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96:13033–13065

    CAS  Google Scholar 

  • Furukawa Y, Tsuji T, Inubushi K (2001) Suppression of methane emission from paddy soil by application of iron materials. Jpn J Soil Sci Plant Nutr 72:257–264 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Grűnfeld S, Brix H (1999) Methanogenesis and methane emissions: Effect of water table, substrate type and presence of Phragmites australis. Aqua Bot 64:63–63

    Google Scholar 

  • Gupta M, Tyler S, Cicerone R (1996) Modeling atmospheric CH4 and the cause of recent changes in atmospheric CH4 amounts. J Geophy Res 101:22923–22932

    CAS  Google Scholar 

  • Hadi A, Haridi M, Inubushi K, Purnomo E, Razie F, Tsuruta H (2001) Effects of land-use change in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes Environ 16:79–86

    Google Scholar 

  • Hein R, Crutzen PJ, Heimann M (1997) An inverse modeling approach to investigate the global atmospheric methane cycle. Glob Biogeochem Cycl 11:43–76

    CAS  Google Scholar 

  • Holzapfel-Pschorn A, Seiler W (1986) Methane emission during cultivation period from an Italian rice paddy. J Geophys Res 91:11803–11814

    CAS  Google Scholar 

  • Hori K, Inubushi K, Matsumoto S, Wada H (1990) Competition for acetic acid between methane formation and sulphate reduction in the paddy soil. Jpn J Soil Sci Plant Nutr 61:572–578 (in Japanese with English summary)

    CAS  Google Scholar 

  • Hori K, Inubushi K, Matsumoto S, Wada H (1993) Competition for hydrogen between methane formation and sulfate reduction in a paddy soil. Jpn J Soil Sci Plant Nutr 64:363–367 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (1995) Climate Change 1994: radiative forcing and a evaluation of the IPCC IS92 emission scenarios. Cambridge University Press Cambridge

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (1996) Climate Change, 1995: The Science of climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Houwelings T, Kaminski F, Dentener JL, Heimann M (1999) Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J Geophys Res 104:26137–26160

    Google Scholar 

  • Hua X, Guangxi X, Cai ZC, Tsuruta H (1997) Nitrous oxide emissions from three rice paddy fields in China. Nutr Cycling Agroecosyst 49:23–28

    CAS  Google Scholar 

  • Hűtsch BW, Webster CP, Powlson DS (1993) Long term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment soil. Biol Biochem 25:1307–1317

    Google Scholar 

  • Inubushi K, Muramatsu Y, Taja D, Umebayashi M (1990) Control of methane emission from paddy soil. Proceeding of 14th International Congress of Soil Science, Kyoto, August 1990

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate Change 2007 – The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, New York

    Google Scholar 

  • Iversen N (1996) Methane oxidation in coastal marine environments. In: Murrell JC, Kelly DP (eds), Microbiology of Atmospheric Trace Gases: Sources, Sink and Global Change Processes, Springer, Berlin, pp 35–68

    Google Scholar 

  • Kanno T, Miura Y, Tsuruta H, Minami K (1997) Methane emission from rice paddy fields in all of Japanese prefecture. Ntur Cycling Agroecosyst 49:147–151

    CAS  Google Scholar 

  • Keerthisinghe DG, Freney JR, Mosier AR (1993) Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biol Fertil Soils 16:71–75

    Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    CAS  Google Scholar 

  • Kimura M (1992) Methane emission from paddy soils in Japan and Thailand. In: Batges NH, Bridges EM (eds) World Inventory of Soil Emission Potentials, WISE Report 2, ISRIC, Wageningen, The Netherlands, pp 43–79

    Google Scholar 

  • Kimura M, Miura Y, Watanable A, Murase J., Kuwatsuka S (1992) Methane production and its fate in paddy fields 1. Effects of rice straw application and percolation rate on the leaching of methane and other soil components into the sub soil. Soil Sci Plat Nutr 38:665–672

    CAS  Google Scholar 

  • Kimura M, Murase J, Lu Y (2004) Carbon cycling in rice field translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416

    CAS  Google Scholar 

  • Kitada K, Ozaki Y, Akiyama Y, Yagi K (1993) Effects of high contact of NO3–N in irrigation water and rice straw application on CH4 emission from paddy fields. Japan J Soil Sci Plant Nutr 64:49–54 (in Japanese with English summary)

    CAS  Google Scholar 

  • Kludze HK, DeLaune RD (1995) Gaseous exchange and wetland plant response to soil redox intensity and capacity. Soil Soc Am J 59:939–945

    CAS  Google Scholar 

  • Koyama T, Hishida M, Tomino T (1970) Influence of sea salt on the soil metabolism II: on the gaseous metabolism. Soil Sci Plant Nutr 16:81–86

    CAS  Google Scholar 

  • Kumar U, Jain MC, Kumar S, Pathak, H, majumder D (2000) Role of nitrification inhibitors on nitrous oxide emission in a fertilized alluvial clay loam under different moisture regimes. Curr Sci 79:224–228

    CAS  Google Scholar 

  • Kumaraswamy S, Ramakrishnan B, Satpathy SN, Rath AK, Misra S, Rao VR, Sethunathan N (1997) Spatial distribution of methane-oxidizing activity in a flooded rice soil. Plant Soil 191:241–248

    CAS  Google Scholar 

  • Kumaraswamy S, Rath AK, Ramakrishnan B, Sethunathan N (2000) Wetland rice soils as sources and sink of methane: A review and prospects for search. Biol Fertil Soils 31:449–461

    CAS  Google Scholar 

  • Ladha JK, Fischer KS, Hossain M, Hobbs PR, Hardy B (eds.) (2000) Improving the Productivity and Sustainability of Rice-Wheat Systems of the Indo-Gangetic Plains, Discussion Paper 2000, No. 40, IRRI, Philippines, pp 31

    Google Scholar 

  • Lampe K (1995) Rice research: food for 4 billion people. Geo Jour 35:253–259

    Google Scholar 

  • Le Mer, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. Eur J Soil Biol 37:25–50

    Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998)Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150

    CAS  Google Scholar 

  • Lin E (1993) Agricultural techniques factors controlling methane emission. In: Gao L, Zheng D, Han X (eds) Proceedings of International Symposium on Climate Change, Natural Disasters and Agricultural Strategies, May 26–29, 1993, Beijing, China, China Meterological Press, Beijing, China, pp 120–126

    Google Scholar 

  • Lindau CW, Alford DP, Bollich PK, Linscombe SD (1994) Inhibition of methane evolution by calcium sulfate addition to flooded rice. Plant Soil 158:299–301

    CAS  Google Scholar 

  • Lindau CW, Bollich PK, DeLaune RD, Mosier AR and Bronson KF (1993) Methane mitigation in flooded Louisiana rice fields. Biol Fertil Soils 15:174–178

    CAS  Google Scholar 

  • Majumdar D, Kumar S, Pathak H, Jain MC, Kumar U (2000) Reducing nitrous oxide emission from rice field with nitrification inhibitors. Agric Ecosys Environ 81:163–169

    CAS  Google Scholar 

  • Matsumoto J, Minamiyama Y, Akahori S, Takahashi K (2002) Suppression of methane emission from paddy field supplemented with organic matter. Japan J Soil Sci Plant Nutr 73:315–318 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Mayer HP, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the inhibition of methane production upon flooding of paddy soil. FEMS Microbiol Lett 73:103–111

    CAS  Google Scholar 

  • McBridge BC, Wolfe RS (1971) Inhibition of methanogenesis by DDT. Nature 234:551

    Google Scholar 

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9

    CAS  Google Scholar 

  • Megraw SR, Knowles R (1989) Isolation, characterization and nitrification potential of a methylotroph and two heterotrophic bacteria from a consortium showing methane-dependent nitrification. FEMS Microbiol Ecol 62:367–374

    CAS  Google Scholar 

  • Minami K, Neue H-U (1994) Rice paddies as a methane source. Clim Change 27:13–26

    CAS  Google Scholar 

  • Minamikawa K, Sakai N (2006)The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field. Japan Agric Ecosys Environ 116:181–188

    Google Scholar 

  • Minamikawa K, Sakai N, Hayashi H (2005) The effect of ammonium sulphate application on methane emission and soil carbon content of a paddy field in Japan. Agric Ecosyst Environ 107:371–379

    CAS  Google Scholar 

  • Minamikawa K., Sakai N, Yagi K (2006) Methane emission from paddy fields and its mitigation options on a field scale. Microbes Environ 21:135–147

    Google Scholar 

  • Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N (1997) Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fertil Soils 24:399–405

    CAS  Google Scholar 

  • Miura Y, Watanabe A, J Murase J, Kimura M (1992) Methane production and its fate in paddy fields. II. Oxidation of methane and its coupled ferric oxide reduction in subsoil. Soil Sci Plant Nutr 38:673–679

    CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Clim Change 40:39–80

    CAS  Google Scholar 

  • Moss A (1992) Methane from ruminants in relation to global warming. Chem Ind 24:334–336

    Google Scholar 

  • Murase J, Kimura M (1994) Methane production and its fate in paddy fields. IV. Sources of microorganisms and substrates responsible for anaerobic methane oxidation in subsoil. Soil Sci Plant Nutr 40:57–61

    CAS  Google Scholar 

  • Neue H-U (1993) Methane emission from rice fields. Bioscience 43:466–477

    Google Scholar 

  • Neue HU, Latin RS, Wassmann R, Aduna JB, Alberto CR, Andales MJF (1994) Methane emission from rice soils of the Philippines. In: Minami K, Mosier A, Sass R (eds) CH4 and N2O: Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources, Natl Inst of Agro-Environ Sci, Tsukuba, pp 55–63

    Google Scholar 

  • Neue HU, Sass RL (1998) The budget of methane from rice fields. IG Activities Newsletter 12:3–11

    Google Scholar 

  • Nouchi I, Mariko S (1993) Mechanism of methane transport by rice plants. In: Oremland RS (ed) Biogeochemistry of Global Change. Chapman and Hall, New York, pp 336–352

    Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66

    CAS  Google Scholar 

  • Nozoe T, Nishibata T, Sekiguchi, Inoue T (1999) Effects of the addition of Fe-containing slag fertilizers on the changes in Eh in paddy soil. Soil Sci Plant Nutr 45:729–735

    CAS  Google Scholar 

  • Nugroho SG, Lumbanraja J, Suprapto H, Sunyoto AWS, Haraguchi H, Kimura M (1994) Methane emission from an Indonesian paddy field subjected to several fertilizer treatments. Soil Sci Plant Nutr 40:275–281

    CAS  Google Scholar 

  • Olivier J, Bouwman A, Berdowski J, Bloos J, Visschedijk A, Van der Mass C, Zandveld P (1999) Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1 × 1 degrees. Environ Sci Policy 2:241–263

    CAS  Google Scholar 

  • Parashar DC, Gupta PK, Bhattacharya S (1997) Recent budget estimates from Indian paddy fields. Ind J Radio Space Phys 26:237–243

    CAS  Google Scholar 

  • Parashar DC, Mitra AP, Gupta PK, Rai J, Sharma RC, Singh N, Koul S, Ray HS, Das SN, Parida KM, Rao SB, Kanungo SP, Ramasami T, Nair BU, Swamy M, Singh G, Gupta SK, Singh AR, Saikia BK, Barua AKS, Pathak MG, Iyer CSP, Gopalakrishnan M, Sane PV, Singh SN, Banerjee R, Sethunathan N, Adhya TK, Rao VR, Palit P, Saha AK, Purkait NN, Chaturvedi GS, Sen SP, Sen M, Sarkar B, Banik A., Subbaraya BH, Lal S, Venkataramani S, Lal G, Chaudhary A, Sinha SK (1996) Methane budget from paddy fields in India. Chemosphere 33:737–757

    CAS  Google Scholar 

  • Patel GB, Roth LA (1977) Effect of sodium chloride on growth and methane production of methanogens. Canadian J Microbiol 185:1167–1168

    Google Scholar 

  • Patnaik GK, Kanungo PK, Rao VR (1994) Interaction of 2,4-dichlorophenoxyacetic acid (2,4-D) with nitrogen fixing bacterial populations and nitrogen fixation associated with rice. Microbial Res 149:291–295

    CAS  Google Scholar 

  • Powlson DS, Goulding KWT, Willison TW, Webster CP, Hutsch BW (1997) The effect of agriculture on methane oxidation in soil. Nutr Cycling Agroecosyst 49:59–70

    CAS  Google Scholar 

  • Prasad R, Power JF (1995) Nitrification inhibitors for the agriculture, health and environment. Adv Agron 54:233–281

    CAS  Google Scholar 

  • Qu D, Ratering S, Schnell S (2004) Microbial reduction of weakly crystalline iron (III) oxides and suppression of methanogenesis in paddy soil. Bull Environ Contam Toxicol 72:1172–1181

    CAS  Google Scholar 

  • Ramakrishna C, Sethunathan N (1982) Stimulation of autotrophic ammonium oxidation in rice rhizosphere soil by an insecticide carbofuran. Appl Environ Microbiol 44:1–4

    CAS  Google Scholar 

  • Rath AK, Swain B, Ramakrishann B, Panda D, Adhya TK, Rao VR, Sethunathan N (1998) Influence of fertilizer management and water regime on methane in submerged rice soil. Global Change Biol 4:397–158

    Google Scholar 

  • Rath AK, Swatin B, Ramakrishnan B, Panda D, Adhya TK, Rao VR, Sethunathan N (1999) Influence of fertilizer management fields. Agric Ecosyst Environ 76:99–107

    CAS  Google Scholar 

  • Rath AK, Swain B, Ramakrishnan B, Panda D, Adhya TK, Rao VR, Sethunathan N (2000) Influence of fertilizer management and water regime on methane emission from rice fields. Agric Ecosystem Environ 76:99–107

    Google Scholar 

  • Ray RC, Ramakrishan C, Sethunathan N (1980) Nitrification inhibition in a flooded soil by hexachlorocyclohexane and carbofuran. Plant Soil 56:165–168

    CAS  Google Scholar 

  • Reddy KR, Patrick Jr WH (1980) Losses of applied 15 NH4-N urea 15 N, and organic 15 N in flooded soils. Soil Sci 130:326–330

    CAS  Google Scholar 

  • Reeburg WS, Whalen SC, Alperin MJ (1994) The role of methylotrophy in the global methane budget. In: Microbial Growth on C1 Compounds.Intercept Ltd, Hampshire, pp 1–14

    Google Scholar 

  • Robertson AM, Wolfe RS (1970) ATP pools in methanobacterium. J Bacteria 102:43–51

    Google Scholar 

  • Rolston DE, Sharpley AN, Toy DW, Broadbent FE (1982) Field, measurement of denitrification: III. Rates during irrigation cycles. Soil Sci Soc Am J 46:289–296

    CAS  Google Scholar 

  • Sahrawat KL, Parmar BS (1975) Alcohal extract of neem (Azadirachta indica L) seed as a nitrification inhibitor. J Indian Soc Soil Sc 23:131–134

    CAS  Google Scholar 

  • Sass RL, Fisher FM, Harcombe PA, Turner FT (1991) Mitigation of methane emission from rice fields: Possible adverse effects of incorporated rice straw. Global Biogeochem Cycles 5:275–287

    Google Scholar 

  • Sass RL, Fisher FM, Wang YB (1992) Methane emission from rice fields: The effect of floodwater management. Global Biogeochem Cycles 6:249–262

    CAS  Google Scholar 

  • Satpathy SN, Rath AK, Mishra SR, Kumaraswamy S, Ramakrishnan B, Adhya TK, Sethunathan N (1997) Effect of chlorocyclohexane on methane production and emission from flooded rice soil. Chemosphere 34:2663–2671

    CAS  Google Scholar 

  • Schimel J (2000) Rice, microbes and methane. Nature 403:375–376

    CAS  Google Scholar 

  • Schűtz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416

    Google Scholar 

  • Schűtz H, Schroder P, Rennenberg H (1991) Role of plants in regulating the methane flux to the atmosphere. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace Gas Emission by Plants, Academic Press, San Diego, pp 29–63

    Google Scholar 

  • Sebacher DI, Hassis RC, Barlett KB (1983) Methane flux across the air-water interface: Air velocity effects. Tellus 35B: 103–109

    CAS  Google Scholar 

  • Seiler W, Conrad R, Scharffe D (1984) Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J Atmos Chem 1:171–186

    CAS  Google Scholar 

  • Singh SN (2001) Exploring correlation between redox potential and other edaphic factors in field and laboratory condition in relation to methane efflux. Environ Internatl 27:265–274

    CAS  Google Scholar 

  • Sprott GD, Jarrell KF, Sjaw KM, Knowles R (1982) Acetylene as an inhibitor of methanogenic bacteria. J Gen Microbiol 128:2453–2462

    CAS  Google Scholar 

  • Sugii H, Hadi A, Acquaye S, Weiguo C, Inubushi K (1999) Effects of restrictions of root zone and percolation on methane emission from wet Andosol paddy field. Tech Bull Fac Hort Chiba Univ 53:7–13

    CAS  Google Scholar 

  • Takai Y (1970) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11:304–313

    Google Scholar 

  • Takai Y, Koyama T, Kamura T (1956) Microbial Metabolism in Reduction process of paddy soils (Part I). Soil Plant Food 2:63–68

    CAS  Google Scholar 

  • Topp E (1993) Effects of selected agrochemicals on methane oxidation by an organic agricultural Soil. Can J Soil Sci 73:287–291

    CAS  Google Scholar 

  • Tsuruta, H., Ozaki Y, Yakajima Y, Akiyama H (1998) Development of LCA method in agricultural systems: Impact assessment of rice paddy fields on atmospheric and aquatic environments. In proceedings on the third international conference on EcoBalance, Tsukuba (in Japanese), pp 209–212

    Google Scholar 

  • Van den Pol-van Dasselar, A, Oenema O (1999) Methane production and carbon mineralization of size and density fractions of peat soils. Soil Biol Biochem 31:877–886

    Google Scholar 

  • Vogels GD, Kjeltjens JT, Van der Drift C (1988) Biochemistry of methane production. In: Zehnder ASB (ed) Biogeochemistry of Methane Production. John Wiley, New York, pp 707–770

    Google Scholar 

  • Wagatsuma TK, Jujo K, Tawaraya, T, Sato AU (1992) Decrease of methane concentration and increase of nitrogen gas concentration in the rhizosphere by hygrophytes. Soil Sci Plant Nutr 38:467–476

    CAS  Google Scholar 

  • Wang B, Xu Y, Zang Z, Li Z, Ding Y, Guo Y (1999) Methane production potentials of twenty-eight rice soils in China. Biol Fertil Soils 29:74–80

    CAS  Google Scholar 

  • Wang Z, Kludze H, Crozier CR, Patrik WH Jr (1995) Soil characteristics affecting methane production and emission in flooded rice. In: Peng S, Ingarm KT, Neue H-U, Ziska LH (eds) Climate Change and Rice, Springer-Verlag, Berlin, Heidelberg, pp 80–90

    Google Scholar 

  • Wang Z, Van Cleemput O, Baert L (1991) Effect of Urease inhibitors on denitrication in soil. Soil Use Manag 7:230–233

    Google Scholar 

  • Wang ZP, Lindau C, DeLaune RD and Patrick WH Jr (1992) Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fert Res 33:115–121

    CAS  Google Scholar 

  • Wang ZP, Lindau CW, DeLaune RD, Patrick WH Jr (1993) Methane emission and entrapment in flooded rice soils as affected by soil prosperities. Biol Fertil Soils 16:163–168

    CAS  Google Scholar 

  • Wassmann R, Buendia LV, Lantin RS, Bueno C, Lubigan LA, Umali A, Nocon NN, Javellana AM, Neue H-U (1999) Mechanism of crop management on methane emissions from rice fields in Los Banos, Phillippines. Nutr Cycling Agroecosys 58:107–119

    Google Scholar 

  • Wassmann R, Lamtin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000) Characterization of methane emissions from rice fields in Asia: III. Mitigation options and future research needs. Nutr Cycling Agroecosyst 58:23–36

    CAS  Google Scholar 

  • Wassmann R, Neue HU, Bueno C, Lantin RS, Alberto MCR, Buendia LV, Bronson K, Papen H, Rennenberg H (1998) Methane production potentials of different soils derived from intrinsic and exogenous substrates. Plant Soil 203:227–237

    CAS  Google Scholar 

  • Wassmann R, Papen H, Rennenberg H (1993) Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26:201–217

    CAS  Google Scholar 

  • Watanable A, Kimura M (1999) Influence of chemical properties of soils on methane emission from rice paddies. Commun Soil Sci Plant Anal 30:2449–2463

    Google Scholar 

  • Watanable A, Takedia T, Kimura M (1999) Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res 104:23623–23629

    Google Scholar 

  • Whalen SC, Reeburg WS, Sandbeek KA (1990) Rapid methane oxidation in a landfill covers soil. Appl Environ Microbiol 56:3405–3411

    CAS  Google Scholar 

  • Willison TW, Webster CT, Goulding KTW, Powlson DS (1995) Methane oxidation in temperate soils: effects of land use and the chemical form nitrogen fertilizer. Chemosphere 30:539–546

    CAS  Google Scholar 

  • Wuebbles DJE, Hayhoe K (2002) Atmospheric methane and global change. Earth-Science Reviews 177:(57) 210, 2002.

    Google Scholar 

  • Yagi K (1997) Methane emissions from paddy fields. Bull Netl Inst Agro-environ Sci 14:96–210

    CAS  Google Scholar 

  • Yagi K, Minami K (1990) Effects of organic matter applications on methane emission from Japanese paddy fields. Soil Sci Plant Nutr 36:599–610

    CAS  Google Scholar 

  • Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycling Agroecosyst 49:213–220

    CAS  Google Scholar 

  • Yagi K, Tsuruta H, Minami K, Chairoj P, Cholitkul W (1994) Methane emission from Japanese and Thai paddy fields. In: Minami K, Moiser A, Sass R (eds), CH4 and N2O: Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources, Natl. Inst. of Agro-Environ. Sci., Tsuluba, pp 41–53

    Google Scholar 

  • Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factirs and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Global Change Biol 9:237–254

    Google Scholar 

  • Yanagisawa M (1978) Degraded paddy soil. In: Kawaguchi K (ed) Paddy Soil Science. Kodan-sha, Tokyo, pp 425–431

    Google Scholar 

  • Yang SS, Chang HL (1997) Effects of environmental conditions on methane production and emission of paddy soil. Agric Ecosystem Environ 69(1):69–80

    Google Scholar 

  • Yao H, Conrad R, Wassmann R, Neue H-U (1999) Effects of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295

    CAS  Google Scholar 

  • Yao H, Zhang YH (1996) Estimation of methane emission from rice paddies in mainland China. Global Biogeochem Cycles 10:641–649

    CAS  Google Scholar 

  • Yoshiba M, Morimura T, Aso S, Takenaga H (1996) Methane production and control in submerged soil applied with Mn++, Fe3+ and SO4 2- rich materials. Japan J Soil Sci Plant Nutr 67:362–370 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  Google Scholar 

  • Zheng XH, Wang MX, Wang YS, Shen RX, Gou J, Li J,Jin JS, Li LT (2000) Impact of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere – Global Change Sci 2:207–224

    CAS  Google Scholar 

  • Zheng YH, Deng GB, Lu GM (1997) Eco-economic benefits of rice-fish-duck complex ecosystem. J Appl Ecol 84:431–434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, S.N., Tyagi, L., Tiwari, S. (2009). Attenuating Methane Emission from Paddy Fields. In: Singh, S.N. (eds) Climate Change and Crops. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88246-6_16

Download citation

Publish with us

Policies and ethics