Skip to main content

Mitigating Greenhouse Gas Emission from Agriculture

  • Chapter
  • First Online:
Climate Change and Crops

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Radiative forcing of Earth’s atmosphere is increasing at unprecedented rates, largely because of increases in the concentrations of atmospheric trace gases, mainly carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) – collectively known as greenhouse gases (GHG). Concentrations of CO2, CH4 and N2O have increased markedly as a result of human activities since 1750 and now far exceeded pre-industrial values as determined from ice cores spanning thousands of years (Table 15.1). The atmospheric concentrations of CO2 and CH4 in 2005 have exceeded the natural range over the last 650,000 years (IPCC 2007). The global atmospheric concentration of CO2 has increased at an annual growth rate of 0.5%, while that of CH4 at 0.6% and nitrous oxide at 0.25%. Agriculture plays a major role in the global fluxes of each of these gases and is considered as one of the major anthropogenic sources (Fig. 15.1). Agriculture comprises several activities, contributing to GHG emissions and globally, the most significant activities identified include (i) deforestation and other land-use changes as a source of CO2, (ii) rice-based production systems (including rice-wheat rotation) as sources of CH4 and N2O (and also source of CO2 due to burning of agricultural residues) and (iii) animal husbandry as a source of CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya TK, Patnaik P, Satpathy SN, Kumaraswamy S, Sethunathan N (1998) Influence of phosphorus application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–181

    Article  CAS  Google Scholar 

  • Adhya TK, Rath AK, Gupta PK, Rao VR, Das SN, Parida KM, Parashar DC, Sethunathan N (1994) Methane emission from flooded rice fields under irrigated conditions. Biol Fertil Soils 18:245–248

    Article  Google Scholar 

  • Arif SMA, Houwen F, Verstrate W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soils 21:95–102

    Article  Google Scholar 

  • Aulakh MS (1989) Transformations of ammonium nitrogen in upland and flooded soils amended with crop residues. J Indian Soc Soil Sci 37:248–255

    Google Scholar 

  • Aulakh MS, Khera TS, Doran JW (2000a) Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil. I. Effect of nitrate and ammoniacal nitrogen. Biol Fertil Soils 31:162–167

    Google Scholar 

  • Aulakh MS, Wassmann R, Rennenberg H (2000b) Methane emissions from rice fields – quantification, role of management and mitigation options. Adv Agron 70:193–260

    Google Scholar 

  • Babu YJ, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42:532–541

    Article  Google Scholar 

  • Beauchemin KA, McGinn SM (2005) Methane emission from feedlot cattle fed barley on corn diets. J Animal Sci 83:653–661

    CAS  Google Scholar 

  • Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in Eastern India. Agric Ecosyst Environ 79:73–83

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilisers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  Google Scholar 

  • Bosse U, Frenzel JP (1997) Activity and distribution of CH\(_{4}\) oxidizing bacteria in flooded rice microcosms and in rice plants (Oryza sativa). Appl Environ Microbiol 63:1199–1207

    CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors and urease inhibitors. Biol Fertil Soils 17:263–268

    Article  CAS  Google Scholar 

  • Cai Z, Mosier AR (2000) Effect of NH\(_{4}\)Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537–1545

    Article  CAS  Google Scholar 

  • Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Article  CAS  Google Scholar 

  • Chadwick DR, Pain BF, Brookeman SKE (2000) Nitrous oxide and methane emissions following application of animal manure to grassland. J Environ Qual 16:443–447

    Google Scholar 

  • Chadwick DR (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos Environ 39:787–799

    Article  CAS  Google Scholar 

  • Chang C, Hao X (2001) Source of N\(_{2}\)O emission from a soil during freezing and thawing. Phyton. Annals Rei Botanicae 41:49–60

    CAS  Google Scholar 

  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Simpson N, Sauerbeck D, Zhao Q (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosys 49:221–228

    Article  CAS  Google Scholar 

  • FAO [Food and Agriculture Organization] (2003) World agriculture: towards 2015/2030. An FAO perspective, FAO, Rome

    Google Scholar 

  • Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res 83:53–72

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanogenic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Harrison R, Webb J (2001) A review of the effect of N fertilizer type on gaseous emission. Adv Agron 73:65–108

    Article  CAS  Google Scholar 

  • Holtan-Hartwig L, Dorsch P, Bakken LR (2002) Low temperature control of soil denitrifying communities: kinetics of N\(_{2}\)O production and reduction. Soil Biol Biochem 34:1797–1806

    Article  CAS  Google Scholar 

  • Huggins DR, Allmaras RR, Clapp CE, Lamb JA, Randall GW (2007) Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci Soc Am J 71:145–154

    Article  CAS  Google Scholar 

  • Hutsch BW (1996) Methane oxidation in soils of two long-term fertilization experiments in Germany. Soil Biol Biochem 28:773–782

    Article  Google Scholar 

  • Hutsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production. European J Agron 14:237–260

    Article  CAS  Google Scholar 

  • IPCC [Intergovernmental Panel on Climate Change] (1997) Guidelines for national greenhouse gas inventories. In: Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development, OECD, Paris

    Google Scholar 

  • IPCC [Intergovernmental Panel on Climate Change] (2007) Intergovernmental Panel on Climate Change, WGI, Fourth Assessment Report, Climate Change, 2007: The Physical Science Basis, Summary for Policymakers. http://www.ipcc.ch/SPM2feb07.pdf

  • Kessavalou A, Mosier AR, Doran JW, Drijber RA, Lyon DJ, Heinemeyer O (1998) Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. J Environ Qual 27:1094–1104

    Article  CAS  Google Scholar 

  • Kruger M, Frenzel P (2003) Effects of N-fertilization on CH\(_{4}\) oxidation and production, and consequences for CH\(_{4}\) emissions from microcosms and rice fields. Global Change Biol 9:773–784

    Article  Google Scholar 

  • Kruger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Global Change Biol 7:49–63

    Article  Google Scholar 

  • Kulling DR, Menzi H, Sutter F, Lischer P, Kreuzer M (2003) Ammonia, nitorus oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutr Cycl Agroecosys 65:13–22

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2007) Carbon management in agricultural soils. Mitigation and adaptation strategies for global change. Global Change 12:303–322

    Google Scholar 

  • Lassey KR (2007) Livestock methane emissions: from the individual grazing animal through national inventories to the global methane cycle. Agric Forest Meteorol 142:120–132

    Article  Google Scholar 

  • Mandal B, Majumder B, Adhya TK, Bandyopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC, Gupta Choudhury S, Hazra GC, Kindu S, Samantaray RN, Misra AK (2008) Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biol 14:2139–2151

    Article  Google Scholar 

  • McSwiney CP, Robertson GP (2005) Nonlinear response of N\(_{2}\)O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biol 11:1712–1719

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Findings from the conditions and trend working group. Washington, DC, Island Press

    Google Scholar 

  • Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N (1997) Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fertil Soils 24:399–405

    Article  CAS  Google Scholar 

  • Mitra S, Jain MC, Kumar S, Bandyopadhya SK, Kalra N (1999) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73:177–183

    Article  CAS  Google Scholar 

  • Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    Article  CAS  Google Scholar 

  • Mosier AR, Duxbury M, Freney JR, Heinemeyer O, Minami K (1998) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil 181:95–108

    Article  Google Scholar 

  • Mosier AR, Halvorson AD, Peterson GA, Robertson GP, Sherrod L (2005) Measurement of net global warming potential in three agroecosystems. Nutr Cycl Agroecosys 72:67–76

    Article  CAS  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35:1584–1598

    Article  CAS  Google Scholar 

  • Mosier AR, Patron WJ, Valentine DW, Ojima DS, Schimel DS, Delgado JA (1996) CH\(_{4}\) and N\(_{2}\)O fluxes in the Colorado shortgrass steppe. Part I: Impact of landscape and nitrogen addition. Global Biogeochem Cycles 10:387–399

    Article  CAS  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Nayak DR, Babu YJ, Datta A, Adhya TK (2007) Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers. J Environ Qual 36: 1577–1584

    Article  CAS  Google Scholar 

  • Neue H-U, Roger PA (1993) Rice agriculture: factor controlling emissions. In: Khalil MAK (ed) The Global Cycle of Methane: Sources, Sinks, Distribution and Role in Global Change. NATO Advance Science Series, Springer-Verlag, Berlin, pp 254–298

    Google Scholar 

  • Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry conditions of temperate and tropical regions. Biogeochem 72:87–121

    Article  Google Scholar 

  • Paustian K, Babcock BA, Hatfield J, Lal R, McCarl BA, McLaughlin S, Mosier A, Rice C, Robertson GP, Rosenberg NJ, Rosenzweig C, Schlesinger WH, Ziberman D (2004) Agricultural mitigation of greenhouse gases: science and policy options. Council on Agricultural Science and Technology (CAST) report, R141 2004, ISBN 1-887383-26-3, pp 120

    Google Scholar 

  • Rath AK, Swain B, Ramakrishnan B, Panda D, Adhya TK, Rao VR, Sethunathan N (1999) Influence of fertilizer management and water regime on methane emission from rice fields. Agric Ecosyst Environ 76:99–107

    Article  CAS  Google Scholar 

  • Reicosky DC, Archer DW (2007) Moldboard plow tillage depth and short-term carbon dioxide release. Soil Tillage Res 94:109–121

    Article  Google Scholar 

  • Reicosky DC, Hatfield JL, Sass RL (2000) Agricultural contribution to greenhouse gas emissions. In: Reddy R, Hodges H (eds) Climate Change and Global Crop Productivity, CABI Publishing, Wallingford, Oxon, UK, pp 37–55

    Chapter  Google Scholar 

  • Richter B (2004) Using ethanol as an energy source. Science 305:340

    Article  CAS  Google Scholar 

  • Robertson GP, Grace PR (2004) Greenhouse gas fluxes in tropical and temperature agriculture: the need for a full-cost accounting of global warming potential. Environ Develop Sustain 6:51–63.

    Article  Google Scholar 

  • Rotz CA (2004) Management to reduce nitrogen losses in animal production. J Animal Sci 82:E119-E137

    Google Scholar 

  • Saggar S, Giltrap DL, Li C, Tate KR (2007) Modelling nitrous oxide emissions from grazed grasslands in New Zealand. Agric Ecosyst Environ 119:205–216

    Article  CAS  Google Scholar 

  • Sahrawat KL, Keeney DR (1986) Nitrous oxide emissions from soil. Adv Soil Sci 4:103–110

    Article  Google Scholar 

  • Satpathy SN, Mishra S, Adhya TK, Ramakrishnan B, Rao VR, Sethunathan N (1998) Cultivar variation in methane efflux from tropical rice. Plant Soil 202:223–229

    Article  CAS  Google Scholar 

  • Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of day-time, season and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416

    Article  Google Scholar 

  • Shalini S, Kumar S, Jain MC (1997) Methane emission from two Indian soils planted with different rice cultivars. Biol Fertil Soils 25:285–289

    Article  Google Scholar 

  • Sharpe RR, Harper LA, Byers FM (2002) Methane emissions from swine lagoons in southeastern US. Agric Ecosyst Environ 90:17–24

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Phil Trans Royal Soc B 363:789–813

    Article  CAS  Google Scholar 

  • Spatari S, Zhang Y, Maclean HL (2005) Life cycle assessment of switchgrass- and corn stover-derived ethanol fueled automobiles. Environ Sci Technol 39:9750–9758

    Article  CAS  Google Scholar 

  • Trines E, Hohne N, Jung M, Skutsch M, Petsonk A, Silva-Chavez G, Smith P, Nabuurs GJ, Verweij P, Schlamadinger B (2006) Integrating agriculture, forestry ad other land use in future climate regimes: Methodological issues and policy options. A Report for the Netherlands Research Programme on Climate Change (NRP-CC), pp 188

    Google Scholar 

  • US-EPA [US-Environmental Protection Agency] (2006) Global Mitigation of Non-CO\(_{2}\) Greenhouse gases (US-EPA Report 430-R-06-005). United States Environmental Protection Agency, Office of the Atmospheric Programs (6207 J), Washington, DC. http://www.epa.gov/nonco2/econo-inv/international.html

  • US-EPA [US-Environmental Protection Agency] (2007) 2007 Draft U.S. Greenhouse Gas Inventory Report: DRAFT Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2005. United States Environmental Protection Agency, Office of Atmospheric Programs (6207 J), Washington, DC. http://epa.gov/climatechange/emissions/usinventoryreport07.html

  • Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J Environ Qual 34:1467–1477

    Article  CAS  Google Scholar 

  • Wassmann R, Neue H-U, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas emission from rice-wheat cropping systems in Asia. In: Eassmann R, Vlek PLG (eds) Tropical Agriculture in Transition – Opportunities for Mitigating Greenhouse Gas Emissions. Kluwer Academic Publications, Dordrecht, The Netherlands, pp 65–90

    Google Scholar 

  • Wassmann R, Papen H, Rennenberg H (1993) Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26:201–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Adhya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adhya, T.K., Sharma, P.D., Kumar Gogoi, A. (2009). Mitigating Greenhouse Gas Emission from Agriculture. In: Singh, S.N. (eds) Climate Change and Crops. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88246-6_15

Download citation

Publish with us

Policies and ethics