Gold Nanoparticles on Waveguides For and Toward Sensing Application

  • Silvia MittlerEmail author
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 7)


First, a short overview of the sensor activities on surface plasmon waveguide mode coupling via wave vector match in metal-coated channel waveguides as well as in slab waveguides and optical fibers is given. Both monomode and multimode approaches were demonstrated as well as the implementation of Bragg gratings and hollow fibers are described. Then, the use of gold nanoparticles for sensor application in combination with these optical device systems is discussed. At the beginning, a channel waveguide approach with gold nanoparticles is described without taking the typical optical features of gold nanoparticles into account. Then, waveguide devices, which use the localized surface plasmon resonance, an absorption band, intrinsic to gold nanoparticles, and the color changes of gold colloids upon clustering for sensor operation are described. This is achieved on quasi-waveguides, channel waveguides, and on optical fibers. Transmission and reflectance experiments have been performed, either with spectral information or with monochromatic light and pure intensity information. An electro-optical approach is discussed. The activities in photonic crystal sensor are described for planar-waveguide systems and hollow photonic crystal fiber bundles.


Optical waveguides Optical fibers Thin gold layers Gold nanoparticles Photonic crystals Sensors 



3- aminopropyltriethoxysilane

Au NPs

Gold nanoparticles


Charged coupled device


Discrete dipole approximation


Deoxy ribonucleic acid


Dinitrophenyl compound




Human serum albumin


Infra red


Indium tin oxide


Localized surface plasmon resonances


N-(2-mercaptopropionyl) glycine


Mercaptoproprionic acid




Organo-metallic chemical vapor deposition


Refractive index unit


Self-assmbled monolayer


Staphylococcal enterotoxin


Transverse electric ( s-polarization, parallel to the glass slide)


Thyroid stimulating hormone


Transverse magnetic (p-polarization, perpendicular the glass slide)



Wave vector


Refractive index




Refractive index change




  1. 1.
    Adams MJ (1981) An introduction to optical waveguides. Wiley, New YorkGoogle Scholar
  2. 2.
    Hunsperger RG (1995) Integrated optics: theory and technology, 4th edn. Springer, BerlinGoogle Scholar
  3. 3.
    Marcuse D (1991) Theory of dielectric optical waveguides, 2nd edn. Academic, BostonGoogle Scholar
  4. 4.
    Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, LondonGoogle Scholar
  5. 5.
    Syms R, Cozens J (1992) Optical guided waves and devices. McGraw-Hill, LondonGoogle Scholar
  6. 6.
    Tamir T (1979) Integrated optics, from topics in applied physics, 2nd edn. Springer, HeidelbergGoogle Scholar
  7. 7.
    Jones WB (1988) Introduction to optical fiber communication systems. Holt, Rinehart, and Winston, New YorkGoogle Scholar
  8. 8.
    Okoshi T, Kikuchi K (1988) Coherent optical fiber communication. Kluwer Academic, DordrechtGoogle Scholar
  9. 9.
    Säckinger E (2005) Broadband circuits for optical fiber communication. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  10. 10.
    Brecht A, Gauglitz G (1997) Lable free optical immunoprobes for pesticide detection. Anal Chimica Acta 347:219–233CrossRefGoogle Scholar
  11. 11.
    Ctyroky J, Homola J, Skalsky M (1997) Modeling of surface plasmon resonance waveguide sensors by complex mode expansion and propagation method. Opt Quantum Electron 29:301–311CrossRefGoogle Scholar
  12. 12.
    Ctyroky J, Homola J, Skalsky M (1997) Tuning of spectral; operation range of waveguide surface plasmon resonance sensor. Electron Lett 33:1246–1248CrossRefGoogle Scholar
  13. 13.
    Dostalek J, Ctyroky J, Homola J et al (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors Actuators B Chem 67:8–12CrossRefGoogle Scholar
  14. 14.
    Harris RD, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sensors Actuators B Chem 29:261–267CrossRefGoogle Scholar
  15. 15.
    Homola J, Ctyroky J, Skalky M et al (1997) A surface plasmon resonance based integrated optical sensor. Sensors Actuators B Chem 38–39:286–290CrossRefGoogle Scholar
  16. 16.
    Lavers CR, Wilkinson JS (1994) A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sensors Actuators B Chem 22:75–81CrossRefGoogle Scholar
  17. 17.
    Matsushita T, Nishikawa T, Yamashita H et al (2008) Development of a new single-mode waveguide surface plasmon resonance sensor using a polymer imprint process for high throughput fabrication and improved design flexibility. Sensors Actuators B Chem 129:881–887CrossRefGoogle Scholar
  18. 18.
    Mouvet C, Harris RD, Maciag C et al (1997) Determination of simazine in water samples by waveguide surface plasmon resonance. Anal Chimica Acta 338:109–117CrossRefGoogle Scholar
  19. 19.
    Weiss MN, Srivastava R, Groger H et al (1996) A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sensors Actuators A Phys 51:211–217CrossRefGoogle Scholar
  20. 20.
    Weisser M, Menges B, Mittler-Neher S (1998) Multimode integrated optical sensor based on absorption due to resonantly coupled surface plasmons. Proc SPIE 3414:250–256CrossRefGoogle Scholar
  21. 21.
    Weisser M, Menges B, Mittler-Neher S (1999) Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons. Sensors Actuators B Chem 56:189–197CrossRefGoogle Scholar
  22. 22.
    Weisser M, Käshammer J, Matsumoto J et al (2000) Adenin - uridin base pairing at the water-solid-interface. J Amer Chem Soc 122:87–95CrossRefGoogle Scholar
  23. 23.
    Mittler S (2006) Gold coated waveguide sensors. In: Grimes CA (ed) Encyclopedia of sensors, 4th edn. American Scientific, California, pp 239–259Google Scholar
  24. 24.
    Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini review. Electromagnetics 28:214–242CrossRefGoogle Scholar
  25. 25.
    Schreiber F (2000) Structure and growth of self-assembled monolayers. Prog Surf Sci 65:151–256CrossRefGoogle Scholar
  26. 26.
    Ulman A (1991) An introduction to ultrathin films. Academic, San DiegoGoogle Scholar
  27. 27.
    Cherif K, Hleli S, Abdelghani A et al (2002) Chemical detection in liquid media with a refractrometric sensor based on a multimode optical fiber. Sensors 2:195–2004CrossRefGoogle Scholar
  28. 28.
    Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multilayered surface plasmon resonance-based fiber optical sensor: a theoretical study. Sensors Actuators B Chem 107:40–46CrossRefGoogle Scholar
  29. 29.
    Ika M, Seki A, Watanabe K (2004) Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sensors Actuators B Chem 101:368–372CrossRefGoogle Scholar
  30. 30.
    Januts NA, Baghdasaryan KS, Nerkarayan KV et al (2005) Excitation and superfocusing of surface plasmon polaritons on silver coated optical fiber tip. Opt Commun 259:118–124CrossRefGoogle Scholar
  31. 31.
    Jorgenson RC, Yee SS (1993) A fiber optical chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–320CrossRefGoogle Scholar
  32. 32.
    Khosravi H, Tilley DR, Loudon R (1991) Surface polariton in cylindrical optical fiber. J Opt Soc Am A 8:112–122CrossRefGoogle Scholar
  33. 33.
    Lin BW, Jaffrezic-Renault N, Gagnaire A et al (2000) The effect of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sensors Actuators A Phys 84:198–2004CrossRefGoogle Scholar
  34. 34.
    Lin HY, Tsao YC, Tsai WH et al (2007) Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sensors Actuators A Phys 138:299–305CrossRefGoogle Scholar
  35. 35.
    Lin HY, Tsai HW, Tsao YC et al (2007) Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light. Appl Opt 46:800–806CrossRefGoogle Scholar
  36. 36.
    Nemova G, Kashyap R (2006) Fiber Bragg grating assisted surface plasmon-polariton sensor. Opt Lett 31:2118–2120CrossRefGoogle Scholar
  37. 37.
    Ronot-Trioli C, Trouillet A, Veillas C et al (1996) Fiber optic chemical sensor based on surface plasmon monochromatic excitation. Anal Chemica Acta 319:121–127CrossRefGoogle Scholar
  38. 38.
    Homola J, Lee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15CrossRefGoogle Scholar
  39. 39.
    Ronot-Trioli C, Trouillet A, Veillas C et al (1996) Monochromatic excitation of surface plasmon resonance in an optical-fiber refractive index sensor. Sensors Actuators A Phys 54:589–593CrossRefGoogle Scholar
  40. 40.
    Nemova G, Kashyap R (2006) Modeling of plasmon-polariton refractive index hollow core fiber sensors assisted by a fiber Bragg grating. J Lightwave Technol 24:3789–3796CrossRefGoogle Scholar
  41. 41.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  42. 42.
    Mirkin CA, Letsinger RL, Mucic RC et al (1996) A DNA-based method for the rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  43. 43.
    Willets KA, van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  44. 44.
    Busse S, Käshammer J, Krämer S et al (1999) Gold and thiol surface functionalized integrated optical Mach-Zehnder interferometer for sensing purposes. Sensors Actuators B Chem 60:148–154CrossRefGoogle Scholar
  45. 45.
    Käshammer J, Wohlfart P, Weiß J et al (1998) Selective gold deposition via CVD onto self-assembled organic monolayers. Opt Mater 9:406–410CrossRefGoogle Scholar
  46. 46.
    Winter C, Weckenmann U, Fischer RA et al (2000) Selective nucleation and area selective OMCVD of gold on patterend self-assembled organic monolayers studied by AFM and XPS: a comparison of OMCVD and PVD. Adv Mater CVD 6:199–205CrossRefGoogle Scholar
  47. 47.
    Wohlfart P, Weiß J, Käshammer J et al (1999) Selective ultrathin gold deposition by organometallic chemical vapor deposition onto organic self-assembled monolayers (SAMs). Thin Solid Films 340:274–279CrossRefGoogle Scholar
  48. 48.
    Wilchek M, Bayer EA (eds) (1990) Avidin-biotin technology, methods in enzymology, vol 184. Academic, San DiegoGoogle Scholar
  49. 49.
    Weisser M, Tovar G, Mittler-Neher S et al (1999) Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosens Bioelectron 14:405–411CrossRefGoogle Scholar
  50. 50.
    Storhoff JJ, Lucas AD, Garimella V et al (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticles probes. Nat Biol 22:883–887CrossRefGoogle Scholar
  51. 51.
    Qi ZM, Matsuda N, Santos J et al (2004) Journal of colloid and interface science 271:249–259CrossRefGoogle Scholar
  52. 52.
    Hamamoto K, Micheletto R, Oyama M et al (2006) An original planar multireflection system for sensing using the local surface plasmon resonance of gold nanospheres J Opt Pure Appl Opt 8:268–271CrossRefGoogle Scholar
  53. 53.
    Aliganga AKA, Lieberwirth I, Glasser G et al (2007) Fabrication of equally oriented pancake shaped gold nanoparticles by SAM templated OMCVD and their optical response. Org Electron 8:161–174CrossRefGoogle Scholar
  54. 54.
    Rooney P, Rezaee A, Xu S et al (2008) Control of surface plasmon resonances in dielectrically-coated proximate gold nanoparticles immobilized on a substrate. Phys Rev B 77:235446CrossRefGoogle Scholar
  55. 55.
    Hashemi Rafsanjani SM, Rangan C, Mittler S (2008) A novel biosensing approach based on linear arrays of immobilized gold nanoparticles. Journal of Applied Physics, under revisionGoogle Scholar
  56. 56.
    Nakanishi T, Takada H, Iida H et al (2008) Immobilization of gold nanoparticles on optical waveguides with organosilane monolayer. Colloids and Surfaces A - Physiocochemical and Engineering Aspects 331–314:234–238CrossRefGoogle Scholar
  57. 57.
    Wang TJ, Lin CS (2006) Electro-optically modulated localized surface plasmon resonance biosensors with gold nanoparticles. Appl Phys Lett 89:173903CrossRefGoogle Scholar
  58. 58.
    Wang TJ, Hsieh CW (2007) Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation. Appl Phys Lett 91:13903Google Scholar
  59. 59.
    Schmidt B, Almeida V, Manolatou C et al (2004) Nanocavity in a silicon waveguide for ultra sensitive nanoparticle detection. Appl Phys Lett 85:4854–4856CrossRefGoogle Scholar
  60. 60.
    Hojjati H, Jiang H, Manifar T et al (2008) Photonic Crystal formation by regular pattern of gold nanoparticles within the evanescent field of a slab glass waveguide, in preparationGoogle Scholar
  61. 61.
    Linden L, Kuhl J, Giessen H (2001) Controlling the Interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86:4688–4691CrossRefGoogle Scholar
  62. 62.
    Gantzounis G, Stefanou N, Papanikolaou N (2008) Optical properties of periodic structures of metallic nanodiscs. Phys Rev B 77:035101CrossRefGoogle Scholar
  63. 63.
    Jiang H, Manifar T, Sabarinathan J, Mittler S (2009) 3-D FDTD Analysis of gold nanoparticle based photonic crystal on slab waveguide. J Lightwave Technol 27(13):2264–2270CrossRefGoogle Scholar
  64. 64.
    Busch K, Lölkes L, Wehrsporn RB et al (eds) (2004) Photonic crystals, advances in design, fabrication and characterization. Wiley, WeinheimGoogle Scholar
  65. 65.
    Meriaudeau F, Wig A, Passian A et al (2000) Gold island fiber optical sensor for refractive index sensing. Sensors Actuators B Chem 69:51057CrossRefGoogle Scholar
  66. 66.
    Mitsui K, Handa Y, Kajikawa K (2004) Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl Phys Lett 85:4231–4233CrossRefGoogle Scholar
  67. 67.
    Sharma A, Gupta BD (2005) Fiber optic sensor based on surface plasmon resonance with nanoparticle films. Photon Nanostruct Fundamentals Appl 3:30–37CrossRefGoogle Scholar
  68. 68.
    Sharma AK, Gupta BD (2006) Fiber-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle fims. Nanotechnology 17:124–131CrossRefGoogle Scholar
  69. 69.
    Chau LK, Lin YF, Cheng SF et al (2006) Fiber-optic chemical and biochemical probes on localized surface plasmon resonance. Sensors Actuators B Chem 113:100–105CrossRefGoogle Scholar
  70. 70.
    Tang JL, Cheng SF, Hsu WT et al (2006) Fiber-optic biochemical sensing with colloidal gold-modified long period fiber grating. Sensors Actuators B Chem 119:1050109Google Scholar
  71. 71.
    Yan H, Gu C, Yang C et al (2006) Hollow core photonic crystal fiber surface enhanced Raman probe. Appl Phys Lett 89:204101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada

Personalised recommendations