Advertisement

Nanohole Arrays in Metal Films as Integrated Chemical Sensors and Biosensors

  • Alexandre G. Brolo
  • Reuven Gordon
  • David SintonEmail author
Chapter
  • 976 Downloads
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 7)

Abstract

Ordered arrays of subwavelength holes in optically thick metal films exhibit optical properties that may be exploited to achieve chemical and biological sensing. The fundamental phenomena governing these interactions, the sensing methodologies they enable, and the on-chip integration of nanohole array sensors are described in this chapter. The fundamental phenomena of confinement, or guiding of electromagnetic waves at a metal surface that are central to the sensing capabilities offered by nanohole arrays in metal films are described first. The fundamental basis for surface plasmon resonance on smooth planar metal-dielectric interfaces as well as the extension and localization of these phenomena to nanostructures is described. Nanohole-array-based sensing methodologies are discussed next. The extraordinary optical transmission through nanohole arrays is described with the application of that phenomenon to surface plasmon resonance-based sensing. Field localization, related to the surface plasmon excitation, enables surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence spectroscopy (SEFS). The application of nanohole arrays in these sensing methodologies are described, as are recent efforts to further localize the electromagnetic field via overlapped double-hole structures. A selection of recently presented experimental results are highlighted throughout the chapter to demonstrate the relevant phenomena and sensing capabilities. In addition to the variety of sensing opportunities offered, both the small footprint of nanohole arrays and the simplified transmission mode operation at normal incidence are highly advantageous with respect to device-level miniaturization. Finally, the micro- and nanofluidic integration of nanohole-array-based sensors is discussed. Integration efforts to date, as well as future prospects for nanohole arrays in a lab-on-chip format and potential to exploit transport phenomena in these structures to the benefit of chemical and biological sensing applications, are described.

Keywords

Nanohole array Surface plasmon resonance Optical sensing Chemical sensing Biosensing Microfluidic Nanofluidic Extraordinary optical transmission 

Abbrreviations

ATR

Attenuated total-internal reflection

BSA

Bovine serum albumin

EOT

Extraordinary optical transmission

FDTD

Finite-difference time-domain

FIB

Focused ion beam

LSP

Localized surface plasmon

MIM

Metal-insulator-metal

MUA

Mercaptoundecanoic acid

RIU

Refractive index unit

RR

Resonance Raman

SEFS

Surface enhanced fluorescence microscopy

SERS

Surface enhanced Raman scattering

SERRS

Surface-enhanced resonance Raman scattering

SHG

Second harmonic generation

SP

Surface plasmon

SPP

Surface plasmons polaritons

SPR

Surface plasmon resonance

TM

Transverse magnetic

Symbols

εd,m

Relative permittivity of dielectric, metal

ε0

Permittivity of vacuum

εr

Relative permittivity

ω

Angular frequency of light

ωp

Angular plasma frequency

c

Speed of light in vacuum

d

Diameter

D

Molecular diffusivity

\( \bar E \)

Electric field

\( \bar H \)

Magnetic field

k

Reaction rate constant

n

Refractive index

neff

Effective refractive index

p

Periodicity

T

Transmittance

x, y, z

Coordinate directions

Notes

Acknowledgments

The authors are grateful for the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada, as well as the support from the BC Cancer Agency and Micralyne Inc. This work was also supported by equipment grants from the Canada Foundation for Innovation (CFI).

References

  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications, 1st edn. Springer, New YorkGoogle Scholar
  2. 2.
    Homola J (2008) Surface plasmon resonance sensor for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  3. 3.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York, p 159Google Scholar
  4. 4.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604CrossRefGoogle Scholar
  5. 5.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  6. 6.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  7. 7.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106CrossRefGoogle Scholar
  8. 8.
    Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett 90:013903CrossRefGoogle Scholar
  9. 9.
    Sipe JE, Boyd RW (2002) Nanocomposite materials for nonlinear optics based on local field effects, in optical properties of nanostructured random media, 82nd edn. Springer, Berlin, pp 1–19Google Scholar
  10. 10.
    Chen CK, de Castro ARB, Shen YR (1981) Surface-enhanced second-harmonic generation. Phys Rev Lett 46:145–148CrossRefGoogle Scholar
  11. 11.
    van Nieuwstadt JAH, Sandtke M, Harmsen RH, Segerink FB, Prangsma JC, Enoch S, Kuipers L (2006) Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys Rev Lett 97:146102CrossRefGoogle Scholar
  12. 12.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  13. 13.
    Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182CrossRefGoogle Scholar
  14. 14.
    Wannemacher R (2001) Plasmon-supported transmission of light through nanometric holes in metallic thin films. Opt Commun 195:107–118CrossRefGoogle Scholar
  15. 15.
    Degiron A, Lezec HJ, Yamamoto N, Ebbesen TW (2004) Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 239:61–66CrossRefGoogle Scholar
  16. 16.
    García de Abajo FJ, Gómez-Medina G, Sáenz JJ (2005) Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 72:016608CrossRefGoogle Scholar
  17. 17.
    Gordon R (2007) Bethe's aperture theory for arrays. Phys Rev A 76:053806CrossRefGoogle Scholar
  18. 18.
    Gay G, Alloschery O, De Lesegno BV, O'Dwyer C, Weiner J, Lezec HJ (2006) The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat Phys 2:262–267CrossRefGoogle Scholar
  19. 19.
    Lezec HJ, Thio T (2004) Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express 12:3629–3651CrossRefGoogle Scholar
  20. 20.
    Flammer PD, Schick IC, Collins RT, Hollingsworth RE (2007) Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films. Opt Express 15:7984–7993CrossRefGoogle Scholar
  21. 21.
    Gao HW, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6:2104–2108CrossRefGoogle Scholar
  22. 22.
    Garcia-Vidal FJ, Martin-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66:155412CrossRefGoogle Scholar
  23. 23.
    Huang CP, Wang QJ, Zhu YY (2007) Dual effect of surface plasmons in light transmission through perforated metal films. Phys Rev B 75:245421CrossRefGoogle Scholar
  24. 24.
    Popov E, Neviere M, Enoch S, Reinisch R (2000) Theory of light transmission through subwavelength periodic hole arrays. Phys Rev B 62:16100–16108CrossRefGoogle Scholar
  25. 25.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018CrossRefGoogle Scholar
  26. 26.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefGoogle Scholar
  27. 27.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  28. 28.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878CrossRefGoogle Scholar
  29. 29.
    Gordon R, Hughes M, Leathem B, Kavanagh KL, Brolo AG (2005) Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett 5:1243–1246CrossRefGoogle Scholar
  30. 30.
    van der Molen KL, Klein KKJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2005) Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory. Phys Rev B 72(045421):1–9Google Scholar
  31. 31.
    Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938CrossRefGoogle Scholar
  32. 32.
    Lesuffleur A, Im H, Lindquist NC, Oh SH (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:261104CrossRefGoogle Scholar
  33. 33.
    Pang L, Hwang GM, Slutsky B, Fainman Y (2007) Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl Phys Lett 91:123112CrossRefGoogle Scholar
  34. 34.
    Stark PRH, Halleck AE, Larson DN (2005) Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37:37–47CrossRefGoogle Scholar
  35. 35.
    Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528–1530CrossRefGoogle Scholar
  36. 36.
    Ji J, O'Connell JG, Carter DJD, Larson DN (2008) High-throughput nanohole array based system to monitor multiple binding events in real time. Anal Chem 80:2491–2498CrossRefGoogle Scholar
  37. 37.
    Lesuffleur A, Im H, Lindquist NC, Lim KS, Oh SH (2008) Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Opt Express 16:219–224CrossRefGoogle Scholar
  38. 38.
    Sharpe JC, Mitchell JS, Lin L, Sedoglavich H, Blaikie RJ (2008) Gold nanohole array substrates as immunobiosensors. Anal Chem 80:2244–2249CrossRefGoogle Scholar
  39. 39.
    Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33CrossRefGoogle Scholar
  40. 40.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  41. 41.
    Chang SH, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165CrossRefGoogle Scholar
  42. 42.
    Krishnan A, Thio T, Kima TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7CrossRefGoogle Scholar
  43. 43.
    Reilly TH, Chang SH, Corbman JD, Schatz GC, Rowlen KL (2007) Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays. J Phys Chem C 111:1689–1694CrossRefGoogle Scholar
  44. 44.
    Bahns JT, Yan FN, Qiu DL, Wang R, Chen LH (2006) Hole-enhanced Raman scattering. Appl Spectrosc 60:989–993CrossRefGoogle Scholar
  45. 45.
    Wenger J, Dintinger J, Bonod N, Popov E, Lenne PF, Ebbesen TW, Rigneault H (2006) Raman scattering and fluorescence emission in a single nanoaperture: optimizing the local intensity enhancement. Opt Commun 267:224–228CrossRefGoogle Scholar
  46. 46.
    Blair S, Chen Y (2001) Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl Opt 40:570–582CrossRefGoogle Scholar
  47. 47.
    Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang CW, Gordon R, Riordon J, Kavanagh KL (2006) Surface plasmon-quantum dot coupling from arrays of nanoholes. J Phys Chem B 110:8307–8313CrossRefGoogle Scholar
  48. 48.
    Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941CrossRefGoogle Scholar
  49. 49.
    Kim JH, Moyer PJ (2007) Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity. Appl Phys Lett 90:131111CrossRefGoogle Scholar
  50. 50.
    Liu Y, Bishop J, Willians L, Blair S, Herron J (2004) Biosensing based upon molecular confinement in metallic nanocavity arrays. Nanotechnology 15:1368–1374CrossRefGoogle Scholar
  51. 51.
    Liu YD, Blair S (2003) Fluorescence enhancement from an array of subwavelength metal apertures. Opt Lett 28:507–509CrossRefGoogle Scholar
  52. 52.
    Stark PRH, Halleck AE, Larson DN (2007) Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures. Proc Natl Acad Sci USA 104:18902–18906CrossRefGoogle Scholar
  53. 53.
    Garrett SH, Smith LH, Barnes WL (2005) Fluorescence in the presence of metallic hole arrays. J Mod Opt 52:1105–1122CrossRefGoogle Scholar
  54. 54.
    Lakowicz JR, Shen YB, D'Auria S, Malicka J, Fang JY, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277CrossRefGoogle Scholar
  55. 55.
    Ritchie G, Burstein E (1981) Luminescence of dye molecules adsorbed at a Ag surface. Phys Rev B 24:4843–4846CrossRefGoogle Scholar
  56. 56.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefGoogle Scholar
  57. 57.
    Wenger J, Lenne PF, Popov E, Rigneault H, Dintinger J, Ebbesen TW (2005) Single molecule fluorescence in rectangular nano-apertures. Opt Express 13:7035–7044CrossRefGoogle Scholar
  58. 58.
    Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90–S96CrossRefGoogle Scholar
  59. 59.
    Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401CrossRefGoogle Scholar
  60. 60.
    Koerkamp KJK, Enoch S, Segerink FB, Hulst NFV, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of nanoholes. Phys Rev Lett 92:183901CrossRefGoogle Scholar
  61. 61.
    Kumar LKS, Gordon R (2006) Overlapping double-hole nanostructure in a metal film for localized field enhancement. IEEE J Sel Top Quantum Electron 12:1228–1232CrossRefGoogle Scholar
  62. 62.
    Kumar LKS, Lesuffleur A, Hughes MC, Gordon R (2006) Double nanohole apex-enhanced transmission in metal films. Appl Phys B 84:25–28CrossRefGoogle Scholar
  63. 63.
    Lesuffleur A, Kumar LKS, Gordon R (2006) Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl Phys Lett 88(26):261104CrossRefGoogle Scholar
  64. 64.
    Lesuffleur A, Kumar LKS, Gordon R (2007) Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film. Phys Rev B 75:045423CrossRefGoogle Scholar
  65. 65.
    Lesuffleur A, Kumar LKS, Brolo AG, Kavanagh KL, Gordon R (2007b) Apex-enhanced raman spectroscopy using double-hole arrays in a gold film. J Phys Chem C 111:2347–2350CrossRefGoogle Scholar
  66. 66.
    Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health. Lab Chip 7:41–57CrossRefGoogle Scholar
  67. 67.
    De Leebeeck A, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100CrossRefGoogle Scholar
  68. 68.
    Eftekhari F, Gordon R, Ferreira J, Brolo AG, Sinton D (2008) Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Appl Phys Lett 92:253103CrossRefGoogle Scholar
  69. 69.
    Wofsy C, Goldstein B (2002) Effective rate models for receptors distributed in a layer above a surface: application to cells and biacore. Biophys J 82:1743–1755CrossRefGoogle Scholar
  70. 70.
    Sinton D, Gordon R, Brolo AG (2008) Nanohole arrays in metal films as optofluidic elements: progress and potential. Microfluid Nanofluidics 4:107–116CrossRefGoogle Scholar
  71. 71.
    Eijkel C, van den Berg TA (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluidics 1:249–267CrossRefGoogle Scholar
  72. 72.
    Günther A, Jensen KJ (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503CrossRefGoogle Scholar
  73. 73.
    Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80:2326–2341CrossRefGoogle Scholar
  74. 74.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexandre G. Brolo
    • 1
  • Reuven Gordon
    • 2
  • David Sinton
    • 3
    Email author
  1. 1.Department of ChemistryUniversity of VictoriaVictoriaCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations