High-Refractive-Index Waveguide Platforms for Chemical and Biosensing

  • Katrin Schmitt
  • Christian HoffmannEmail author
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 7)


The field of chemical and biosensors based on waveguide technology is rapidly growing, with new developments focusing on higher sensitivity and stability. This key demand is prompting researchers and developers to explore new materials for waveguide sensor systems, with especially high-refractive-index materials as promising components. This chapter gives an overview of different sensor platforms implementing high-refractive-index waveguide materials, with applications in both research and commercial sensor systems. This is accompanied by a theoretical background of waveguide-sensing principles, especially focusing on the key steps to high sensor sensitivities.


Evanescent field Label-free Fluorescence Biosensor 



Charge coupled device


Deoxyribonucleic acid




Ribonucleic acid



Speed of light in vacuum


Thickness, diameter, distance


Effective thickness of the waveguide

\( \vec D \)

Electric displacement

\( \vec E \)

Electric field

\( \vec H \)

Magnetic field


Imaginary unit


Wave vector


Interaction length


Mode number


Refractive index


Refractive index of the ambient medium


Refractive index of the surface adlayer


Effective refractive index of the waveguide

nw, nc, ns

Refractive index of waveguide, cover and substrate


Light intensity


Input power


Output power


Thickness of the surface adlayer


Transverse electric


Transverse magnetic


Penetration depth


Coupling angle


Propagation constant of the mode m


Mass coverage



\( {\overline \varphi}_{cr} \)

Critical angle


Phase shift


Diffraction order




Wavelength in vacuum


Grating period




Phase shift upon reflection


Angular frequency


  1. 1.
    Baird CL, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recogn 14:261–268CrossRefGoogle Scholar
  2. 2.
    Keusgen M (2002) Biosensors: new approaches in drug discovery. Naturwissenschaften 89:433–444CrossRefGoogle Scholar
  3. 3.
    Nice EC, Catimel B (1999) Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. BioEssays 21:339–352CrossRefGoogle Scholar
  4. 4.
    Saleh BEA, Teich MC (2007) Fundamentals of photonics. Wiley, New YorkGoogle Scholar
  5. 5.
    Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, LondonGoogle Scholar
  6. 6.
    Kogelnik H (1988) Theory of optical waveguides. Springer, New York, Berlin, HeidelbergGoogle Scholar
  7. 7.
    Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209–220CrossRefGoogle Scholar
  8. 8.
    Schmitt K (2006) A new waveguide interferometer for the label-free detection of biomolecules. PhD thesis, Université Louis Pasteur, StrasbourgGoogle Scholar
  9. 9.
    Hu H, Lu F, Chen F, Shi B-R, Wang K-M, Shen D-Y (2001) Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation. J Appl Phys 89:5224–5226CrossRefGoogle Scholar
  10. 10.
    Korishko YN, Fedorov VA, Feoktistova OY (2000) LiNbO3 Optical waveguide fabrication by high-temperature proton exchange. J Lightwave Technol 18:562–568CrossRefGoogle Scholar
  11. 11.
    Brandenburg A, Krauter R, Künzel C, Stefan M, Schulte H (2000) Interferometric sensor for detection of surface-bound bioreactions. Appl Opt 39:6396–6405CrossRefGoogle Scholar
  12. 12.
    Germann R, Salemink HWM, Beyeler R, Bona GL, Horst F, Massarek I, Offrein BJ (2000) Silicon oxynitride layers for optical waveguide applications. J Electrochem Soc 147:2237–2241CrossRefGoogle Scholar
  13. 13.
    Gorecki C (2000) Optimization of plasma-deposited silicon oxinitride films for optical channel waveguides. Opt Lasers Eng 33:15–20CrossRefGoogle Scholar
  14. 14.
    Wörhoff K, Lambeck PV, Driessen A (1999) Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J Lightwave Technol 17:1401–1407CrossRefGoogle Scholar
  15. 15.
    Lukosz W (1991) Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosens Bioelectron 6:215–225CrossRefGoogle Scholar
  16. 16.
    Höök F, Vörös J, Rodahl M, Kurrat R, Böni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces 24:155–170CrossRefGoogle Scholar
  17. 17.
    Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sensors Actuators B Chem 61:100–127CrossRefGoogle Scholar
  18. 18.
    Piehler J, Brandenburg A, Brecht A, Wagner E, Gauglitz G (1997) Characterization of grating couplers for affinity-based pesticide sensing. Appl Opt 36:6554–6562CrossRefGoogle Scholar
  19. 19.
    Cottier K, Wiki M, Voirin G, Gao H, Kunz RE (2003) Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips. Sensors Actuators B Chem 91:241–251CrossRefGoogle Scholar
  20. 20.
    Schmitt K, Schirmer B, Hoffmann C, Brandenburg A, Meyrueis P (2007) Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens Bioelectron 22:2591–2597CrossRefGoogle Scholar
  21. 21.
    Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7:2316–2329CrossRefGoogle Scholar
  22. 22.
    Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal Chem 77:5720–5725CrossRefGoogle Scholar
  23. 23.
    Tamir T, Peng ST (1977) Analysis and design of grating couplers. Appl Phys 14:235–254CrossRefGoogle Scholar
  24. 24.
    Lukosz W, Tiefenthaler K (1984) Directional switching in planar waveguides effected by adsorption-desorption processes. In: Proceedings of 2nd european conference on integrated optics, Florence, ItalyGoogle Scholar
  25. 25.
    Nellen PM, Lukosz W (1990) Integrated optical input grating couplers as chemo- and immunosensors. Sensors Actuators B Chem 1:592–596CrossRefGoogle Scholar
  26. 26.
    Nellen PM, Tiefenthaler K, Lukosz W (1988) Integrated optical input grating couplers as biochemical sensors. Sensors Actuators 15:285–295CrossRefGoogle Scholar
  27. 27.
    Lukosz W, Clerc D, Nellen PM, Stamm C, Weiss P (1991) Output grating couplers on planar optical waveguides as direct immunosensors. Biosens Bioelectron 6:227–232CrossRefGoogle Scholar
  28. 28.
    Lukosz W, Nellen PM, Stamm C, Weiss P (1990) Output grating couplers on planar waveguides as integrated optical chemical sensors. Sensors Actuators B Chem 1:585–588CrossRefGoogle Scholar
  29. 29.
    Brandenburg A, Gombert A (1993) Grating couplers as chemical sensors: a new optical configuration. Sensors Actuators B Chem 17:35–40CrossRefGoogle Scholar
  30. 30.
    Brandenburg A, Polzius R, Bier F, Bilitewski U, Wagner E (1996) Direct observation of affinity reactions by reflected-mode operation of integrated optical coupler. Sensors Actuators B Chem 30:55–59CrossRefGoogle Scholar
  31. 31.
    Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sensors Actuators B Chem 81:316–328CrossRefGoogle Scholar
  32. 32.
    Cunningham B, Qiu J, Li P, Lin B (2002) Enhancing the surface sensitivity of colorimetric resonant optical biosensors. Sensors Actuators B Chem 6779:1–6Google Scholar
  33. 33.
    Li PY, Lin B, Gerstenmaier J, Cunningham BT (2004) A new method for label-free imaging of biomolecular interactions. Sensors Actuators B Chem 99:6–13CrossRefGoogle Scholar
  34. 34.
    Weisser M, Tovar G, Mittler-Neher S, Knoll W, Brosinger F, Freimuth H, Lacher M, Ehrfeld W (1999) Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosens Bioelectron 14:405–411CrossRefGoogle Scholar
  35. 35.
    Hoffmann C, Schmitt K, Brandenburg A, Hartmann S (2007) Rapid protein expression analysis with an interferometric biosensor for monitoring protein production. Anal Bioanal Chem 387:1921–1932CrossRefGoogle Scholar
  36. 36.
    Schneider BH, Edwards J, Hartman N (1997) Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. Clin Chem 43:1757–1763Google Scholar
  37. 37.
    Ymeti A, Kanger JS, Wijn R, Lambeck PV, Greve J (2002) Development of a multichannel integrated interferometer immunosensor. Sensors Actuators B Chem 83:1–7CrossRefGoogle Scholar
  38. 38.
    Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ, Freeman NJ (2003) A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron 19:383–390CrossRefGoogle Scholar
  39. 39.
    Cross GH, Ren Y, Freeman NJ (1999) Young's fringes from vertically integrated slab waveguides: applications to humidity sensing. J Appl Phys 86:6483–6488CrossRefGoogle Scholar
  40. 40.
    Stamm C, Dangel R, Lukosz W (1998) Biosensing with the integrated-optical difference interferometer: dual-wavelength operation. Opt Commun 153:347–359CrossRefGoogle Scholar
  41. 41.
    Kronick MN, Little WA (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J Immunol Methods 8:235–240CrossRefGoogle Scholar
  42. 42.
    Grandin HM, Staedler B, Textor M, Vörös J (2006) Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens Bioelectron 21:1476–1482CrossRefGoogle Scholar
  43. 43.
    Neuschäfer D, Budach W, Wanke C, Chibout S-D (2003) Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays. Biosens Bioelectron 18:489–497CrossRefGoogle Scholar
  44. 44.
    Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M (2002) Zeptosens`protein microarrays: A novel high performance microarray platform for low abundance protein analysis. Proteomics 2:383–393CrossRefGoogle Scholar
  45. 45.
    Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10CrossRefGoogle Scholar
  46. 46.
    Ronan G (2004) Doubling up: dual polarization interferometry determines protein structure and function. SPIE's oemagazine 17–20Google Scholar
  47. 47.
    Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, Genick C, Wang F, Fine E, Laing L (2004) Label-free assays on the BIND system. J Biomol Screen 9:481–490CrossRefGoogle Scholar
  48. 48.
    Ehrat M, Kresbach GM (2001) DNA and protein microarrays and their contributions to proteomics and genomics. Chimia 55:35–39Google Scholar
  49. 49.
    Schmitt K, Oehse K, Sulz G, Hoffmann C (2008) Evanescent field sensors based on tantalum pentoxide waveguides – a review. Sensors 8:711–738CrossRefGoogle Scholar
  50. 50.
    Miklos GL, Maleszka R (2001) Protein functions and biological contexts. Proteomics 1: 169–178CrossRefGoogle Scholar
  51. 51.
    Weissenstein U, Schneider MJ, Pawlak M, Cicenas J, Eppenberger-Castori S, Oroszlan P, Ehret S, Geurts-Moespot A, Sweep FCGJ, Eppenberger U (2006) Protein chip based miniaturized assay for simultaneous quantitative monitoring of cancer biomarkers in tissue extracts. Proteomics 6:1427–1436CrossRefGoogle Scholar
  52. 52.
    Templin MF, Stoll D, Pawlak M, Joos TO (2006) Protein microarrays: Neue Systeme für die Proteomforschung. GIT Labor-Fachzeitschrift 50:890–892Google Scholar
  53. 53.
    Homola J, Vaisocherová H, Dostálek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37:26–36CrossRefGoogle Scholar
  54. 54.
    Rich RL, Myszka DG (2005) Survey of the year 2003 commercial optical biosensor literature. J Mol Recogn 18:1–39CrossRefGoogle Scholar
  55. 55.
    Bier FF, Jockers R, Schmid RD (1994) Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations. Analyst 119:437–441CrossRefGoogle Scholar
  56. 56.
    Polzius R, Bier FF, Bilitewski U, Jäger V, Schmid RD (1993) On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler. Biotech Bioeng 42:1287–1292CrossRefGoogle Scholar
  57. 57.
    Polzius R, Dießel E, Bier F, Bilitewski U (1997) Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of rate constants. Anal Biochem 248:269–276CrossRefGoogle Scholar
  58. 58.
    Prieto F, Sepúlveda B, Calle A, Llobera A, Domínguez C, Lechuga LM (2003) Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sensors Actuators B Chem 92:151–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  2. 2.Institute for Bioprocessing and Analytical Measurement TechniquesHeilbad HeiligenstadtGermany

Personalised recommendations