Skip to main content

High-Refractive-Index Waveguide Platforms for Chemical and Biosensing

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 7))

Abstract

The field of chemical and biosensors based on waveguide technology is rapidly growing, with new developments focusing on higher sensitivity and stability. This key demand is prompting researchers and developers to explore new materials for waveguide sensor systems, with especially high-refractive-index materials as promising components. This chapter gives an overview of different sensor platforms implementing high-refractive-index waveguide materials, with applications in both research and commercial sensor systems. This is accompanied by a theoretical background of waveguide-sensing principles, especially focusing on the key steps to high sensor sensitivities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CCD:

Charge coupled device

DNA:

Deoxyribonucleic acid

MZI:

Mach-Zehnder-Interferometer

RNA:

Ribonucleic acid

c :

Speed of light in vacuum

d :

Thickness, diameter, distance

d eff :

Effective thickness of the waveguide

\( \vec D \) :

Electric displacement

\( \vec E \) :

Electric field

\( \vec H \) :

Magnetic field

i:

Imaginary unit

k:

Wave vector

L :

Interaction length

m:

Mode number

n :

Refractive index

n a :

Refractive index of the ambient medium

n ad :

Refractive index of the surface adlayer

n eff :

Effective refractive index of the waveguide

n w, n c, n s :

Refractive index of waveguide, cover and substrate

P :

Light intensity

P in :

Input power

P out :

Output power

t ad :

Thickness of the surface adlayer

TE:

Transverse electric

TM:

Transverse magnetic

Δz:

Penetration depth

α:

Coupling angle

β m :

Propagation constant of the mode m

ΔΓ:

Mass coverage

ε :

Permittivity

\( {\overline \varphi}_{cr} \) :

Critical angle

Δϕ:

Phase shift

κ:

Diffraction order

λ :

Wavelength

λ 0 :

Wavelength in vacuum

Λ :

Grating period

μ :

Permeability

τr :

Phase shift upon reflection

ω :

Angular frequency

References

  1. Baird CL, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recogn 14:261–268

    Article  CAS  Google Scholar 

  2. Keusgen M (2002) Biosensors: new approaches in drug discovery. Naturwissenschaften 89:433–444

    Article  CAS  Google Scholar 

  3. Nice EC, Catimel B (1999) Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. BioEssays 21:339–352

    Article  CAS  Google Scholar 

  4. Saleh BEA, Teich MC (2007) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  5. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, London

    Google Scholar 

  6. Kogelnik H (1988) Theory of optical waveguides. Springer, New York, Berlin, Heidelberg

    Google Scholar 

  7. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209–220

    Article  CAS  Google Scholar 

  8. Schmitt K (2006) A new waveguide interferometer for the label-free detection of biomolecules. PhD thesis, Université Louis Pasteur, Strasbourg

    Google Scholar 

  9. Hu H, Lu F, Chen F, Shi B-R, Wang K-M, Shen D-Y (2001) Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation. J Appl Phys 89:5224–5226

    Article  CAS  Google Scholar 

  10. Korishko YN, Fedorov VA, Feoktistova OY (2000) LiNbO3 Optical waveguide fabrication by high-temperature proton exchange. J Lightwave Technol 18:562–568

    Article  Google Scholar 

  11. Brandenburg A, Krauter R, Künzel C, Stefan M, Schulte H (2000) Interferometric sensor for detection of surface-bound bioreactions. Appl Opt 39:6396–6405

    Article  CAS  Google Scholar 

  12. Germann R, Salemink HWM, Beyeler R, Bona GL, Horst F, Massarek I, Offrein BJ (2000) Silicon oxynitride layers for optical waveguide applications. J Electrochem Soc 147:2237–2241

    Article  CAS  Google Scholar 

  13. Gorecki C (2000) Optimization of plasma-deposited silicon oxinitride films for optical channel waveguides. Opt Lasers Eng 33:15–20

    Article  Google Scholar 

  14. Wörhoff K, Lambeck PV, Driessen A (1999) Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J Lightwave Technol 17:1401–1407

    Article  Google Scholar 

  15. Lukosz W (1991) Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosens Bioelectron 6:215–225

    Article  Google Scholar 

  16. Höök F, Vörös J, Rodahl M, Kurrat R, Böni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces 24:155–170

    Article  Google Scholar 

  17. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sensors Actuators B Chem 61:100–127

    Article  Google Scholar 

  18. Piehler J, Brandenburg A, Brecht A, Wagner E, Gauglitz G (1997) Characterization of grating couplers for affinity-based pesticide sensing. Appl Opt 36:6554–6562

    Article  CAS  Google Scholar 

  19. Cottier K, Wiki M, Voirin G, Gao H, Kunz RE (2003) Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips. Sensors Actuators B Chem 91:241–251

    Article  CAS  Google Scholar 

  20. Schmitt K, Schirmer B, Hoffmann C, Brandenburg A, Meyrueis P (2007) Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens Bioelectron 22:2591–2597

    Article  CAS  Google Scholar 

  21. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7:2316–2329

    Article  CAS  Google Scholar 

  22. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal Chem 77:5720–5725

    Article  CAS  Google Scholar 

  23. Tamir T, Peng ST (1977) Analysis and design of grating couplers. Appl Phys 14:235–254

    Article  Google Scholar 

  24. Lukosz W, Tiefenthaler K (1984) Directional switching in planar waveguides effected by adsorption-desorption processes. In: Proceedings of 2nd european conference on integrated optics, Florence, Italy

    Google Scholar 

  25. Nellen PM, Lukosz W (1990) Integrated optical input grating couplers as chemo- and immunosensors. Sensors Actuators B Chem 1:592–596

    Article  Google Scholar 

  26. Nellen PM, Tiefenthaler K, Lukosz W (1988) Integrated optical input grating couplers as biochemical sensors. Sensors Actuators 15:285–295

    Article  CAS  Google Scholar 

  27. Lukosz W, Clerc D, Nellen PM, Stamm C, Weiss P (1991) Output grating couplers on planar optical waveguides as direct immunosensors. Biosens Bioelectron 6:227–232

    Article  CAS  Google Scholar 

  28. Lukosz W, Nellen PM, Stamm C, Weiss P (1990) Output grating couplers on planar waveguides as integrated optical chemical sensors. Sensors Actuators B Chem 1:585–588

    Article  Google Scholar 

  29. Brandenburg A, Gombert A (1993) Grating couplers as chemical sensors: a new optical configuration. Sensors Actuators B Chem 17:35–40

    Article  CAS  Google Scholar 

  30. Brandenburg A, Polzius R, Bier F, Bilitewski U, Wagner E (1996) Direct observation of affinity reactions by reflected-mode operation of integrated optical coupler. Sensors Actuators B Chem 30:55–59

    Article  Google Scholar 

  31. Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sensors Actuators B Chem 81:316–328

    Article  Google Scholar 

  32. Cunningham B, Qiu J, Li P, Lin B (2002) Enhancing the surface sensitivity of colorimetric resonant optical biosensors. Sensors Actuators B Chem 6779:1–6

    Google Scholar 

  33. Li PY, Lin B, Gerstenmaier J, Cunningham BT (2004) A new method for label-free imaging of biomolecular interactions. Sensors Actuators B Chem 99:6–13

    Article  CAS  Google Scholar 

  34. Weisser M, Tovar G, Mittler-Neher S, Knoll W, Brosinger F, Freimuth H, Lacher M, Ehrfeld W (1999) Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosens Bioelectron 14:405–411

    Article  CAS  Google Scholar 

  35. Hoffmann C, Schmitt K, Brandenburg A, Hartmann S (2007) Rapid protein expression analysis with an interferometric biosensor for monitoring protein production. Anal Bioanal Chem 387:1921–1932

    Article  CAS  Google Scholar 

  36. Schneider BH, Edwards J, Hartman N (1997) Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. Clin Chem 43:1757–1763

    CAS  Google Scholar 

  37. Ymeti A, Kanger JS, Wijn R, Lambeck PV, Greve J (2002) Development of a multichannel integrated interferometer immunosensor. Sensors Actuators B Chem 83:1–7

    Article  Google Scholar 

  38. Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ, Freeman NJ (2003) A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron 19:383–390

    Article  CAS  Google Scholar 

  39. Cross GH, Ren Y, Freeman NJ (1999) Young's fringes from vertically integrated slab waveguides: applications to humidity sensing. J Appl Phys 86:6483–6488

    Article  CAS  Google Scholar 

  40. Stamm C, Dangel R, Lukosz W (1998) Biosensing with the integrated-optical difference interferometer: dual-wavelength operation. Opt Commun 153:347–359

    Article  CAS  Google Scholar 

  41. Kronick MN, Little WA (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J Immunol Methods 8:235–240

    Article  CAS  Google Scholar 

  42. Grandin HM, Staedler B, Textor M, Vörös J (2006) Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens Bioelectron 21:1476–1482

    Article  CAS  Google Scholar 

  43. Neuschäfer D, Budach W, Wanke C, Chibout S-D (2003) Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays. Biosens Bioelectron 18:489–497

    Article  CAS  Google Scholar 

  44. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M (2002) Zeptosens`protein microarrays: A novel high performance microarray platform for low abundance protein analysis. Proteomics 2:383–393

    Article  CAS  Google Scholar 

  45. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10

    Article  Google Scholar 

  46. Ronan G (2004) Doubling up: dual polarization interferometry determines protein structure and function. SPIE's oemagazine 17–20

    Google Scholar 

  47. Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, Genick C, Wang F, Fine E, Laing L (2004) Label-free assays on the BIND system. J Biomol Screen 9:481–490

    Article  CAS  Google Scholar 

  48. Ehrat M, Kresbach GM (2001) DNA and protein microarrays and their contributions to proteomics and genomics. Chimia 55:35–39

    CAS  Google Scholar 

  49. Schmitt K, Oehse K, Sulz G, Hoffmann C (2008) Evanescent field sensors based on tantalum pentoxide waveguides – a review. Sensors 8:711–738

    Article  CAS  Google Scholar 

  50. Miklos GL, Maleszka R (2001) Protein functions and biological contexts. Proteomics 1: 169–178

    Article  CAS  Google Scholar 

  51. Weissenstein U, Schneider MJ, Pawlak M, Cicenas J, Eppenberger-Castori S, Oroszlan P, Ehret S, Geurts-Moespot A, Sweep FCGJ, Eppenberger U (2006) Protein chip based miniaturized assay for simultaneous quantitative monitoring of cancer biomarkers in tissue extracts. Proteomics 6:1427–1436

    Article  CAS  Google Scholar 

  52. Templin MF, Stoll D, Pawlak M, Joos TO (2006) Protein microarrays: Neue Systeme für die Proteomforschung. GIT Labor-Fachzeitschrift 50:890–892

    Google Scholar 

  53. Homola J, Vaisocherová H, Dostálek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37:26–36

    Article  CAS  Google Scholar 

  54. Rich RL, Myszka DG (2005) Survey of the year 2003 commercial optical biosensor literature. J Mol Recogn 18:1–39

    Article  CAS  Google Scholar 

  55. Bier FF, Jockers R, Schmid RD (1994) Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations. Analyst 119:437–441

    Article  CAS  Google Scholar 

  56. Polzius R, Bier FF, Bilitewski U, Jäger V, Schmid RD (1993) On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler. Biotech Bioeng 42:1287–1292

    Article  CAS  Google Scholar 

  57. Polzius R, Dießel E, Bier F, Bilitewski U (1997) Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of rate constants. Anal Biochem 248:269–276

    Article  CAS  Google Scholar 

  58. Prieto F, Sepúlveda B, Calle A, Llobera A, Domínguez C, Lechuga LM (2003) Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sensors Actuators B Chem 92:151–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, K., Hoffmann, C. (2010). High-Refractive-Index Waveguide Platforms for Chemical and Biosensing. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors I. Springer Series on Chemical Sensors and Biosensors, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88242-8_2

Download citation

Publish with us

Policies and ethics