Skip to main content

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford MH (2003) Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423:159–162

    Article  Google Scholar 

  • Al-Tahir A, Baban SMJ, Ramlal B (2006) Utilizing emerging geo-imaging technologies for the management of tropical coastal environments. West Indian J Eng 29:11–22

    Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. US Geological Survey Professional Paper 964, Washington, DC, 28p

    Google Scholar 

  • Arnone RA, Parsons AR (2004) Real-time use of ocean color remote sensing for coastal monitoring. In: Miller RL, Del Castillo CE, McKee BA (eds) Remote sensing of the coastal environment. Springer Publishing, Kluwer Academic, New York

    Google Scholar 

  • Avery TE, Berlin GL (1992) Fundamentals of remote sensing and airphoto interpretation. Macmillan, New York

    Google Scholar 

  • Bathgate J, Heron M, Prytz A (2006) A method of swell parameter extraction from HF ocean surface radar spectra. IEEE J Oceanic Eng 31:812–818

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Google Scholar 

  • Bissett WP, Arnone R, Davis CO, Dye D, Kohler DDR, Gould R (2004) From meters to kilometers- a look at ocean color scales of variability, spatial coherence, and the need for fine scale remote sensing in coastal ocean optics. Oceanography 17:32–43

    Google Scholar 

  • Breaker LC, Krasnopolski VM, Rao DB, Yan X-H (1994) The feasibility of estimating ocean surface currents on an operational basis using satellite feature tracking methods. Bull Am Meteor Soc 75:2085–2095

    Article  Google Scholar 

  • Brock J, Sallenger A (2000) Airborne topographic LIDAR mapping for coastal science. U.S. Geological Survey, Open-File Report 01–46

    Google Scholar 

  • Bukata R (2005) Satellite monitoring of inland and coastal water quality: retrospection, introspection, future directions. Taylor & Francis, London

    Google Scholar 

  • Burrage DM, Heron ML, Hacker JM, Miller JL, Stieglitz TC, Steinberg CR, Prytz A (2003) Structure and influence of tropical river plumes in the Great Barrier reef: Application and performance of an airborne sea surface salinity mapping system. Remote Sens Envir 85:204–220

    Article  Google Scholar 

  • Campbell JB (2007) Introduction to remote sensing. The Guilford Press, New York

    Google Scholar 

  • Cannizzaro JP, Carder KL (2006) Estimating chlorophyll-a concentrations from remote sensing reflectance in optically shallow waters. Remote Sens Envir 101:13–24

    Article  Google Scholar 

  • Chipman JW, Lillesand TM, Schmaltz JE, Leale JE, Nordheim MJ (2004). Mapping lake water clarity with Landsat images in Wisconsin, USA. Can J Remote Sens 30:1–7

    Google Scholar 

  • Cowardin L, Carter V, Golet F, LaRoe E (1979) Classification of wetlands and deep water habitats of the United States. US Department of the Interior, Fish and Wildlife Service, Office of Biological Services, FWS/OBS-79/31. Washington, DC, 131p

    Google Scholar 

  • Cracknell AP, Hayes L (2007) Introduction to remote sensing. CRC Press, New York

    Google Scholar 

  • Davis RE (1985) Drifter observations of coastal surface currents during CODE: the method and descriptive view. J Geophys Res 90:4741–4755

    Article  Google Scholar 

  • Digital Globe (2003) Quickbird imagery products and product guide (revision 4). Digital Globe, Inc., Colorado, USA

    Google Scholar 

  • Dobson JE, Bright EA, Ferguson RL, Field DW, Wood LL, Haddad KD, Iredale H, Jensen JR, Klemas V, Orth RJ, Thomas JP (1995) NOAA Coastal Change Analysis Program (C-CAP): Guidance for regional implementation, NOAA Technical Report NMFS 123, U.S. Department of Commerce, Washington, DC

    Google Scholar 

  • Donato T, Klemas V (2001) Remote sensing and modeling applications for coastal resource management. Geocarto Int 16:23–29

    Article  Google Scholar 

  • Dzwonkowski B, Yan X-H (2005a) Development and application of a neural network based ocean color algorithm in coastal water. Int J Remote Sens 26:1175–1200

    Article  Google Scholar 

  • Dzwonkowski B, Yan X-H (2005b) Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data. Continental Shelf Res 25:1942–1958

    Article  Google Scholar 

  • Elachi C, van Ziel J (2006) Introduction to the physics and techniques of remote sensing. John Wiley & Sons, New Jersey

    Google Scholar 

  • Gitelson A (1993) Quantitative remote sensing methods for real-time monitoring of inland water quality. Int J Remote Sens 14:1269–1295

    Article  Google Scholar 

  • Goward SN, Markham B, Dye DG, Dulaney W, Yang J (1991) Normalized Difference Vegetation Index measurements from the Advanced Very High Resolution Radiometer. Remote Sens Envir 35:257–277

    Article  Google Scholar 

  • Graber H, Haus B, Chapman R, Shay L (1997) HF radar comparisons with moored estimates of current speed and direction: expected differences and implications. J Geophys Res 102:18, 749–18, 766

    Article  Google Scholar 

  • Gross MF, Hardisky MA, Klemas V, Wolf PL (1987) Quantification of biomass of the marsh grass Spartina Alterniflora Loisel using Landsat Thematic Mapper imagery. Photogramm Eng Remote Sens 53:1577–1583

    Google Scholar 

  • Hardisky MA, Daiber FC, Roman CT, Klemas V (1984) Remote sensing of biomass and annual net aerial productivity of a salt marsh. Remote Sens Envir 16:91–106

    Article  Google Scholar 

  • Hess L, Melack J, Simonett D (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11:1313–1325

    Article  Google Scholar 

  • Ikeda M, Dobson FW (1995) Oceanographic applications of remote sensing. CRC Press, New York

    Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective. Prentice-Hall, New Jersey

    Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment: an Earth resource perspective. Prentice Hall, New Jersey

    Google Scholar 

  • Keiner LE, Brown CW (1999) Estimating oceanic chlorophyll concentrations with neural networks. Int J Remote Sens 20:189–194

    Article  Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications of remote sensing. Trends Ecol Evol 18:299–305

    Article  Google Scholar 

  • Klemas V (1980) Remote sensing of coastal fronts and their effects on oil dispersion. Int J Remote Sens 1:11–28

    Article  Google Scholar 

  • Klemas V (2005) Remote sensing: Wetlands classification. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, Dordrecht, The Netherlands, pp 804–807

    Chapter  Google Scholar 

  • Klemas V (2007) Remote sensing of coastal wetlands and estuaries. Proc of Coastal Zone 07. NOAA Coastal Services Center, Charleston, South Carolina

    Google Scholar 

  • Klemas V, Dobson JE, Ferguson RL, Haddad KD (1993) A coastal land cover classification system for the NOAA Coastwatch Change Analysis Project. J Coast Res 9:862–872

    Google Scholar 

  • Klemas V, Philpot W (1981) Drift and dispersion studies of ocean-dumped waste using Landsat imagery and current drogues. Photogram Eng Remote Sens 47:533–542

    Google Scholar 

  • Kogan FN (2001) Operational space technology for global vegetation assessment. Bull Amer Meteor Soc 82:1949–1964

    Article  Google Scholar 

  • Lachowski H, Maus P, Golden M, Johnson J, Landrum V, Powell J, Varner V, Wirth T, Gonzales J, Bain S (1995) Guidelines for the use of digital imagery for vegetation mapping. U.S. Department of Agriculture, Forest Service EM-7140-25, Washington, DC

    Google Scholar 

  • Lathrop RG, Cole MB, Showalter RD (2000) Quantifying the habitat structure and spatial pattern of New Jersey (USA) salt marshes under different management regimes. Wetl Ecol Manag 8:163–172

    Article  Google Scholar 

  • Leica (2002) ADS40 Airborne digital sensor. Leica Geosystems, GIS and Mapping, LLC, Atlanta, Georgia, USA

    Google Scholar 

  • Lillesand TM, Kiefer RW (1994) Remote sensing and image interpretation. John Wiley & Sons, New Jersey

    Google Scholar 

  • Longhurst A (1998) Ecological Geography of the Sea. Academic Press, London

    Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite data. J Plank Res 17:1245–1271

    Article  Google Scholar 

  • Lunetta RS, Elvidge CD (1998) Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor Press, Michigan

    Google Scholar 

  • Lyon JG, McCarthy J (1995) Wetland and environmental applications of GIS. Lewis Publishers, New York

    Google Scholar 

  • Maeder J, Narumalani S, Rundquist D, Perk R, Schalles J, Hutchins K, Keck J (2002) Classifying and mapping general coral reef structure using Ikonos data. Photogram Eng Remote Sens 68:1297–1305

    Google Scholar 

  • Martin S (2004) An introduction to remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Mather JR, Field RT, Yoshioka GA (1967) Storm damage hazard along the East Coast of the United States. J Appl Meteor 6:20–30

    Article  Google Scholar 

  • McClain C, Hooker S, Feldman G, Bontempi P (2006) Satellite data for ocean biology, biogeochemistry, and climate research. Eos, Transactions, Amer Geophys Union 87:337–343

    Google Scholar 

  • McCoy R (2005) Field methods in remote sensing. Guilford Press, New York

    Google Scholar 

  • Mishra D, Narumalani S, Rundquist D, Lawson M (2006) Benthic habitat mapping in tropical marine environments using QuickBird multispectral data. Photogram Eng Remote Sens 72:1037–1048

    Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with Ikonos imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Envir 82:248–257

    Article  Google Scholar 

  • Odum EP (1993) Ecology and Our Endangered Life-Support Systems, 2nd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Orbimage (2003) OrbView-3 Satellite and ground systems specifications. Orbimage Inc., Virginia, USA

    Google Scholar 

  • Paduan JD, Graber HC (1997) Introduction to high-frequency radar: Reality and myth. Oceanography 10:36–39

    Google Scholar 

  • Parkinson CL (2003) Aqua: An earth-observing satellite mission to examine water and other climate variables. IEEE T Geosci and Remote 41:173–183

    Article  Google Scholar 

  • Porter DE (2006) RESAAP/Final Report, NOAA/NERRS Remote sensing applications assessment project. University of South Carolina

    Google Scholar 

  • Prince SD, Justice CO (1991) Coarse resolution remote sensing of the Sahelian environment. Int J Remote Sens 12:1133–1421

    Article  Google Scholar 

  • Purkis SJ (2005) A reef-up approach to classifying coral habitats from IKONOS imagery. IEEE T Geosci Remote 43:1375–1390

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Envir 48:119–126

    Article  Google Scholar 

  • Ramsey E (1995) Monitoring flooding in coastal wetlands by using radar imagery and ground-based measurements. Int J Remote Sens 16:2495–2502

    Article  Google Scholar 

  • Rasher ME, Weaver W (1990) Basic photo interpretation: a comprehensive approach to interpretation of vertical aerial photography for natural resource applications. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Read JM, Clark DB, Venticinque EM, Moreira MP (2003) Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. J Appl Ecol 40:592–600

    Article  Google Scholar 

  • Ruddick KG (2001) Optical remote sensing of chlorophyll-a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Appl Optics 40:3575–3585

    Article  Google Scholar 

  • Ryan JP, Yoder JA, Cornillon PC, Barth JA (1999) Chlorophyll enhancement and mixing associated with meanders of the shelf break front in the Mid-Atlantic Bight. J Geophys Res 104:23, 479–23, 493

    Article  Google Scholar 

  • Sabins FF (1978) Remote sensing: principles and interpretation, 2nd edn. Freeman & Co, New York

    Google Scholar 

  • Sarabun CC (1993) Observations of a Chesapeake Bay tidal front. Estuaries 16:68–73

    Article  Google Scholar 

  • Schmidt KS, Skidmore AK, Kloosterman EH, Van Oosten H, Kumar L, Janssen JAM (2004) Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogram Eng Remote Sens 70:703–716

    Google Scholar 

  • Schofield O, Arnone RA, Bissett WP, Dickey TD, Davis CO, Finkel Z, Oliver M, Moline MA (2004) Watercolors in the Coastal Zone: What can we see? Oceanography 17:25–31

    Google Scholar 

  • Sellers PJ, Schimel D (1993) Remote sensing of the land biosphere and biochemistry in the EOS era: science priorities, methods of implementation – EOS biosphere and biochemical panels. Global Planet Change 7:279–297

    Article  Google Scholar 

  • Souza CM, Roberts DA (2005) Mapping forest degradation in the Amazon region with Ikonos images. Int J Remote Sens 26:425–429

    Article  Google Scholar 

  • Space Imaging (2003) IKONOS Imagery products and product guide (version 1.3). Space Imaging LLC., Colorado, USA

    Google Scholar 

  • Sydor M (2006) Use of hyperspectral remote sensing reflectance in extracting the spectral volume absorption coefficient for phytoplankton in coastal water: remote sensing relationships for the inherent optical properties of coastal water. J Coastal Res 22:587–594

    Article  Google Scholar 

  • Thomas AC, Weatherbee RA (2006) Satellite-measured temporal variability of the Columbia River plume. Remote Sens Envir 100:167–178

    Article  Google Scholar 

  • Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Saharan desert from 1980 to 1990. Science 253:299–301

    Article  Google Scholar 

  • Yan X-H, Ho C, Zheng Q, Klemas V (1993) Using satellite IR in studies of the variabilities of the Western Pacific Warm Pool. Science 262:440–441

    Article  Google Scholar 

  • Zhao X, Klemas V, Zheng Q, Li X, Yan X-H (2004) Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solarity waves observed in satellite SAR images. Remote Sens Envir 94:276–287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klemas, V.V. (2009). Sensors and Techniques for Observing Coastal Ecosystems. In: Yang, X. (eds) Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88183-4_2

Download citation

Publish with us

Policies and ethics